These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Proteomic Analysis of Zebrafish Protein Recoding via mRNA Editing by ADAR Enzymes. Nasaev SS; Kopeykina AS; Kuznetsova KG; Levitsky LI; Moshkovskii SA Biochemistry (Mosc); 2022 Nov; 87(11):1301-1309. PubMed ID: 36509721 [TBL] [Abstract][Full Text] [Related]
8. Adenosine-to-Inosine Editing of MicroRNA-487b Alters Target Gene Selection After Ischemia and Promotes Neovascularization. van der Kwast RVCT; van Ingen E; Parma L; Peters HAB; Quax PHA; Nossent AY Circ Res; 2018 Feb; 122(3):444-456. PubMed ID: 29284691 [TBL] [Abstract][Full Text] [Related]
9. A survey on cellular RNA editing activity in response to Candida albicans infections. Huang Y; Cao Y; Li J; Liu Y; Zhong W; Li X; Chen C; Hao P BMC Genomics; 2018 Jan; 19(Suppl 1):43. PubMed ID: 29363428 [TBL] [Abstract][Full Text] [Related]
10. The landscape of the A-to-I RNA editome from 462 human genomes. Ouyang Z; Ren C; Liu F; An G; Bo X; Shu W Sci Rep; 2018 Aug; 8(1):12069. PubMed ID: 30104667 [TBL] [Abstract][Full Text] [Related]
11. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Kawahara Y; Zinshteyn B; Sethupathy P; Iizasa H; Hatzigeorgiou AG; Nishikura K Science; 2007 Feb; 315(5815):1137-40. PubMed ID: 17322061 [TBL] [Abstract][Full Text] [Related]
12. RNA editing in regulating gene expression in the brain. Jepson JE; Reenan RA Biochim Biophys Acta; 2008 Aug; 1779(8):459-70. PubMed ID: 18086576 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide evaluation and discovery of vertebrate A-to-I RNA editing sites. Maas S; Godfried Sie CP; Stoev I; Dupuis DE; Latona J; Porman AM; Evans B; Rekawek P; Kluempers V; Mutter M; Gommans WM; Lopresti D Biochem Biophys Res Commun; 2011 Sep; 412(3):407-12. PubMed ID: 21835166 [TBL] [Abstract][Full Text] [Related]
15. Improved design of hammerhead ribozyme for selective digestion of target RNA through recognition of site-specific adenosine-to-inosine RNA editing. Fukuda M; Kurihara K; Yamaguchi S; Oyama Y; Deshimaru M RNA; 2014 Mar; 20(3):392-405. PubMed ID: 24448449 [TBL] [Abstract][Full Text] [Related]
16. Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome. Daniel C; Widmark A; Rigardt D; Öhman M Genome Biol; 2017 Oct; 18(1):195. PubMed ID: 29061182 [TBL] [Abstract][Full Text] [Related]
17. Age-related gene-specific changes of A-to-I mRNA editing in the human brain. Nicholas A; de Magalhaes JP; Kraytsberg Y; Richfield EK; Levanon EY; Khrapko K Mech Ageing Dev; 2010 Jun; 131(6):445-7. PubMed ID: 20538013 [TBL] [Abstract][Full Text] [Related]
18. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Levanon EY; Hallegger M; Kinar Y; Shemesh R; Djinovic-Carugo K; Rechavi G; Jantsch MF; Eisenberg E Nucleic Acids Res; 2005; 33(4):1162-8. PubMed ID: 15731336 [TBL] [Abstract][Full Text] [Related]
19. Noncoding regions of C. elegans mRNA undergo selective adenosine to inosine deamination and contain a small number of editing sites per transcript. Wheeler EC; Washburn MC; Major F; Rusch DB; Hundley HA RNA Biol; 2015; 12(2):162-74. PubMed ID: 25826568 [TBL] [Abstract][Full Text] [Related]
20. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. Zhu S; Xiang JF; Chen T; Chen LL; Yang L BMC Genomics; 2013 Mar; 14():206. PubMed ID: 23537002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]