These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31576741)
1. Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. Wang C; Collins DB; Abbatt JPD Environ Sci Technol; 2019 Oct; 53(20):11792-11800. PubMed ID: 31576741 [TBL] [Abstract][Full Text] [Related]
2. Gas-Phase and Surface-Initiated Reactions of Household Bleach and Terpene-Containing Cleaning Products Yield Chlorination and Oxidation Products Adsorbed onto Indoor Relevant Surfaces. Deeleepojananan C; Grassian VH Environ Sci Technol; 2023 Dec; 57(49):20699-20707. PubMed ID: 38010858 [TBL] [Abstract][Full Text] [Related]
3. Observations and impacts of bleach washing on indoor chlorine chemistry. Wong JPS; Carslaw N; Zhao R; Zhou S; Abbatt JPD Indoor Air; 2017 Nov; 27(6):1082-1090. PubMed ID: 28646605 [TBL] [Abstract][Full Text] [Related]
4. Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Mattila JM; Lakey PSJ; Shiraiwa M; Wang C; Abbatt JPD; Arata C; Goldstein AH; Ampollini L; Katz EF; DeCarlo PF; Zhou S; Kahan TF; Cardoso-Saldaña FJ; Ruiz LH; Abeleira A; Boedicker EK; Vance ME; Farmer DK Environ Sci Technol; 2020 Feb; 54(3):1730-1739. PubMed ID: 31940195 [TBL] [Abstract][Full Text] [Related]
5. Ozone and limonene in indoor air: a source of submicron particle exposure. Wainman T; Zhang J; Weschler CJ; Lioy PJ Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393 [TBL] [Abstract][Full Text] [Related]
6. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Singer BC; Destaillats H; Hodgson AT; Nazaroff WW Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937 [TBL] [Abstract][Full Text] [Related]
7. Reaction of HOCl with Wood Smoke Aerosol: Impacts on Indoor Air Quality and Outdoor Reactive Chlorine. Jorga SD; Wang Y; Abbatt JPD Environ Sci Technol; 2023 Jan; ():. PubMed ID: 36607741 [TBL] [Abstract][Full Text] [Related]
8. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios. Youssefi S; Waring MS Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869 [TBL] [Abstract][Full Text] [Related]
9. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols. Rösch C; Wissenbach DK; Franck U; Wendisch M; Schlink U Environ Pollut; 2017 Jul; 226():463-472. PubMed ID: 28456415 [TBL] [Abstract][Full Text] [Related]
10. The health significance of gas- and particle-phase terpene oxidation products: a review. Rohr AC Environ Int; 2013 Oct; 60():145-62. PubMed ID: 24036325 [TBL] [Abstract][Full Text] [Related]
11. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations. Niu X; Ho SSH; Ho KF; Huang Y; Cao J; Shen Z; Sun J; Wang X; Wang Y; Lee S; Huang R Sci Total Environ; 2017 Feb; 579():212-220. PubMed ID: 27842959 [TBL] [Abstract][Full Text] [Related]
12. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent. Nørgaard AW; Kofoed-Sørensen V; Mandin C; Ventura G; Mabilia R; Perreca E; Cattaneo A; Spinazzè A; Mihucz VG; Szigeti T; de Kluizenaar Y; Cornelissen HJ; Trantallidi M; Carrer P; Sakellaris I; Bartzis J; Wolkoff P Environ Sci Technol; 2014 Nov; 48(22):13331-9. PubMed ID: 25299176 [TBL] [Abstract][Full Text] [Related]
13. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects. Nørgaard AW; Kudal JD; Kofoed-Sørensen V; Koponen IK; Wolkoff P Environ Int; 2014 Jul; 68():209-18. PubMed ID: 24769411 [TBL] [Abstract][Full Text] [Related]
14. Near-source hypochlorous acid emissions from indoor bleach cleaning. Stubbs AD; Lao M; Wang C; Abbatt JPD; Hoffnagle J; VandenBoer TC; Kahan TF Environ Sci Process Impacts; 2023 Jan; 25(1):56-65. PubMed ID: 36602445 [TBL] [Abstract][Full Text] [Related]
15. Indoor hydrogen peroxide derived from ozone/d-limonene reactions. Li TH; Turpin BJ; Shields HC; Weschler CJ Environ Sci Technol; 2002 Aug; 36(15):3295-302. PubMed ID: 12188357 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneous reactions of ozone and D-limonene on activated carbon. Metts TA; Batterman SA Indoor Air; 2007 Oct; 17(5):362-71. PubMed ID: 17880632 [TBL] [Abstract][Full Text] [Related]
17. Modification of cleaning product formulations could improve indoor air quality. Carslaw N; Shaw D Indoor Air; 2022 Mar; 32(3):e13021. PubMed ID: 35347794 [TBL] [Abstract][Full Text] [Related]
18. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment. Rösch C; Wissenbach DK; von Bergen M; Franck U; Wendisch M; Schlink U Environ Sci Pollut Res Int; 2015 Sep; 22(18):14209-19. PubMed ID: 25966888 [TBL] [Abstract][Full Text] [Related]
19. Elevated levels of chloramines and chlorine detected near an indoor sports complex. Angelucci AA; Crilley LR; Richardson R; Valkenburg TSE; Monks PS; Roberts JM; Sommariva R; VandenBoer TC Environ Sci Process Impacts; 2023 Feb; 25(2):304-313. PubMed ID: 36484250 [TBL] [Abstract][Full Text] [Related]
20. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint. Lamorena RB; Jung SG; Bae GN; Lee W J Hazard Mater; 2007 Mar; 141(1):245-51. PubMed ID: 16908097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]