BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31576868)

  • 21. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.
    Xia HM; Wan SY; Shu C; Chew YT
    Lab Chip; 2005 Jul; 5(7):748-55. PubMed ID: 15970968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.
    Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A
    J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.
    Kwak TJ; Nam YG; Najera MA; Lee SW; Strickler JR; Chang WJ
    PLoS One; 2016; 11(11):e0166068. PubMed ID: 27814386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A practical guide to the staggered herringbone mixer.
    Williams MS; Longmuir KJ; Yager P
    Lab Chip; 2008 Jul; 8(7):1121-9. PubMed ID: 18584088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and evaluation of a passive alcove-based microfluidic mixer.
    Egawa T; Durand JL; Hayden EY; Rousseau DL; Yeh SR
    Anal Chem; 2009 Feb; 81(4):1622-7. PubMed ID: 19140669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixing characteristics of mixers in flow analysis. Application to two-dimensional detection in ion chromatography.
    Liao H; Dasgupta PK; Srinivasan K; Liu Y
    Anal Chem; 2015 Jan; 87(1):793-800. PubMed ID: 25426864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micromixing within microfluidic devices.
    Capretto L; Cheng W; Hill M; Zhang X
    Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.
    Gikanga B; Chen Y; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Random design of microfluidics.
    Wang J; Brisk P; Grover WH
    Lab Chip; 2016 Oct; 16(21):4212-4219. PubMed ID: 27713978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytic modelling of passive microfluidic mixers.
    Bonament A; Prel A; Sallese JM; Lallement C; Madec M
    Math Biosci Eng; 2022 Feb; 19(4):3892-3908. PubMed ID: 35341279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixing Performance of a 3D Micro T-Mixer with Swirl-Inducing Inlets and Rectangular Constriction.
    Zhang J; Luo X
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
    Sivashankar S; Agambayev S; Mashraei Y; Li EQ; Thoroddsen ST; Salama KN
    Biomicrofluidics; 2016 May; 10(3):034120. PubMed ID: 27453767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A micromixer with consistent mixing performance for a wide range of flow rates.
    Goovaerts R; Van Assche T; Sonck M; Denayer J; Desmet G
    Electrophoresis; 2015 Feb; 36(3):405-12. PubMed ID: 25220210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An acoustofluidic device for efficient mixing over a wide range of flow rates.
    Bachman H; Chen C; Rufo J; Zhao S; Yang S; Tian Z; Nama N; Huang PH; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1238-1248. PubMed ID: 32104816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells.
    Downs BM; Hoang TM; Cope L
    Langmuir; 2023 Mar; 39(9):3225-3234. PubMed ID: 36811956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid droplet mixers for digital microfluidic systems.
    Paik P; Pamula VK; Fair RB
    Lab Chip; 2003 Nov; 3(4):253-9. PubMed ID: 15007455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
    Verma MK; Ganneboyina SR; R VR; Ghatak A
    Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater.
    Yesiloz G; Boybay MS; Ren CL
    Anal Chem; 2017 Feb; 89(3):1978-1984. PubMed ID: 28029032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergy between flow and light fields and its applications to the design of mixers in microalgal photobioreactors.
    Qin C; Wu J; Wang J
    Biotechnol Biofuels; 2019; 12():93. PubMed ID: 31044006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.