These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31577295)

  • 1. Charge-induced electromechanical actuation of two-dimensional hexagonal and pentagonal materials.
    Thanh VV; Truong DV; Tuan Hung N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22377-22384. PubMed ID: 31577295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.
    Wu X; Varshney V; Lee J; Zhang T; Wohlwend JL; Roy AK; Luo T
    Nano Lett; 2016 Jun; 16(6):3925-35. PubMed ID: 27152879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-induced electromechanical actuation of Mo- and W-dichalcogenide monolayers.
    Van Thanh V; Hung NT; Van Truong D
    RSC Adv; 2018 Nov; 8(67):38667-38672. PubMed ID: 35559053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic transport properties of hydrogenated and fluorinated graphene: a computational study.
    Khatami MM; Gaddemane G; Van de Put ML; Moravvej-Farshi MK; Vandenberghe WG
    J Phys Condens Matter; 2020 Sep; 32(49):495502. PubMed ID: 32955019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetra-penta-deca-hexagonal-graphene (TPDH-graphene) hydrogenation patterns: dynamics and electronic structure.
    Oliveira CC; Medina M; Galvao DS; Autreto PAS
    Phys Chem Chem Phys; 2023 May; 25(18):13088-13093. PubMed ID: 37115202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of doping effects on magnetic properties of the hydrogenated and fluorinated graphene structures by extra charge mimic.
    Wang M; Li CM
    Phys Chem Chem Phys; 2013 Mar; 15(11):3786-92. PubMed ID: 23396450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.
    Xiao B; Li YC; Yu XF; Cheng JB
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35342-35352. PubMed ID: 27977126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H; Qin G; Lin Y; Hu M
    Nano Lett; 2016 Jun; 16(6):3831-42. PubMed ID: 27228130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic strengthening of graphene by charge doping.
    Si C; Duan W; Liu Z; Liu F
    Phys Rev Lett; 2012 Nov; 109(22):226802. PubMed ID: 23368146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hole defects and nitrogen doping in graphene: implication for supercapacitor applications.
    Luo G; Liu L; Zhang J; Li G; Wang B; Zhao J
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11184-93. PubMed ID: 24134508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penta-Pt
    Liu Z; Wang H; Sun J; Sun R; Wang ZF; Yang J
    Nanoscale; 2018 Aug; 10(34):16169-16177. PubMed ID: 30118120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study.
    Quijano-Briones JJ; Fernández-Escamilla HN; Tlahuice-Flores A
    Phys Chem Chem Phys; 2016 Jun; 18(23):15505-9. PubMed ID: 27220553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the thermodynamic, kinetic, and magnetic properties of the hydrogen monomer on graphene by charge doping.
    Huang LF; Ni MY; Zhang GR; Zhou WH; Li YG; Zheng XH; Zeng Z
    J Chem Phys; 2011 Aug; 135(6):064705. PubMed ID: 21842947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an Understanding of the Electric Field-Induced Electrostatic Doping in van der Waals Heterostructures: A First-Principles Study.
    Lu AK; Houssa M; Radu IP; Pourtois G
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7725-7734. PubMed ID: 28192656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-hexagonal-ring defects and structures induced by healing and strain in graphene and functionalized graphene.
    da Silva-Araújo J; Nascimento AJ; Chacham H; Nunes RW
    Nanotechnology; 2013 Jan; 24(3):035708. PubMed ID: 23263158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realization of an Ideal Cairo Tessellation in Nickel Diazenide NiN
    Bykov M; Bykova E; Ponomareva AV; Tasnádi F; Chariton S; Prakapenka VB; Glazyrin K; Smith JS; Mahmood MF; Abrikosov IA; Goncharov AF
    ACS Nano; 2021 Aug; 15(8):13539-13546. PubMed ID: 34355559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penta-PdPSe: A New 2D Pentagonal Material with Highly In-Plane Optical, Electronic, and Optoelectronic Anisotropy.
    Li P; Zhang J; Zhu C; Shen W; Hu C; Fu W; Yan L; Zhou L; Zheng L; Lei H; Liu Z; Zhao W; Gao P; Yu P; Yang G
    Adv Mater; 2021 Sep; 33(35):e2102541. PubMed ID: 34302398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Penta-BCN: A New Ternary Pentagonal Monolayer with Intrinsic Piezoelectricity.
    Zhao K; Guo Y; Shen Y; Wang Q; Kawazoe Y; Jena P
    J Phys Chem Lett; 2020 May; 11(9):3501-3506. PubMed ID: 32293184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying the electronic and phononic structure of penta-graphane.
    Einollahzadeh H; Fazeli SM; Dariani RS
    Sci Technol Adv Mater; 2016; 17(1):610-617. PubMed ID: 27877907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.