BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31577299)

  • 1. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes.
    Kubyshkin V; Grage SL; Ulrich AS; Budisa N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22396-22408. PubMed ID: 31577299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane Polyproline Helix.
    Kubyshkin V; Grage SL; Bürck J; Ulrich AS; Budisa N
    J Phys Chem Lett; 2018 May; 9(9):2170-2174. PubMed ID: 29638132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; Lemaître V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA
    Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation.
    Harzer U; Bechinger B
    Biochemistry; 2000 Oct; 39(43):13106-14. PubMed ID: 11052662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic mismatch between helices and lipid bilayers.
    Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW
    Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells.
    Grau-Campistany A; Strandberg E; Wadhwani P; Reichert J; Bürck J; Rabanal F; Ulrich AS
    Sci Rep; 2015 Mar; 5():9388. PubMed ID: 25807192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending the Hydrophobic Mismatch Concept to Amphiphilic Membranolytic Peptides.
    Grau-Campistany A; Strandberg E; Wadhwani P; Rabanal F; Ulrich AS
    J Phys Chem Lett; 2016 Apr; 7(7):1116-20. PubMed ID: 26963560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch.
    Sparr E; Ash WL; Nazarov PV; Rijkers DT; Hemminga MA; Tieleman DP; Killian JA
    J Biol Chem; 2005 Nov; 280(47):39324-31. PubMed ID: 16169846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi.
    Webb RJ; East JM; Sharma RP; Lee AG
    Biochemistry; 1998 Jan; 37(2):673-9. PubMed ID: 9425090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling.
    Anbazhagan V; Schneider D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR.
    Strandberg E; Ozdirekcan S; Rijkers DT; van der Wel PC; Koeppe RE; Liskamp RM; Killian JA
    Biophys J; 2004 Jun; 86(6):3709-21. PubMed ID: 15189867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.