These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Caputo GA Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773 [TBL] [Abstract][Full Text] [Related]
4. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch. Yeagle PL; Bennett M; Lemaître V; Watts A Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071 [TBL] [Abstract][Full Text] [Related]
5. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
6. The determinants of hydrophobic mismatch response for transmembrane helices. de Jesus AJ; Allen TW Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244 [TBL] [Abstract][Full Text] [Related]
7. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Harzer U; Bechinger B Biochemistry; 2000 Oct; 39(43):13106-14. PubMed ID: 11052662 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobic mismatch between helices and lipid bilayers. Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Grau-Campistany A; Strandberg E; Wadhwani P; Reichert J; Bürck J; Rabanal F; Ulrich AS Sci Rep; 2015 Mar; 5():9388. PubMed ID: 25807192 [TBL] [Abstract][Full Text] [Related]
10. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
12. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. Sparr E; Ash WL; Nazarov PV; Rijkers DT; Hemminga MA; Tieleman DP; Killian JA J Biol Chem; 2005 Nov; 280(47):39324-31. PubMed ID: 16169846 [TBL] [Abstract][Full Text] [Related]
13. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
14. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
15. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi. Webb RJ; East JM; Sharma RP; Lee AG Biochemistry; 1998 Jan; 37(2):673-9. PubMed ID: 9425090 [TBL] [Abstract][Full Text] [Related]
16. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling. Anbazhagan V; Schneider D Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102 [TBL] [Abstract][Full Text] [Related]
17. Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. Strandberg E; Ozdirekcan S; Rijkers DT; van der Wel PC; Koeppe RE; Liskamp RM; Killian JA Biophys J; 2004 Jun; 86(6):3709-21. PubMed ID: 15189867 [TBL] [Abstract][Full Text] [Related]
18. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers. Bürck J; Wadhwani P; Fanghänel S; Ulrich AS Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718 [TBL] [Abstract][Full Text] [Related]
19. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related]
20. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]