These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 31577411)
1. High Power Density Body Heat Energy Harvesting. Nozariasbmarz A; Kishore RA; Poudel B; Saparamadu U; Li W; Cruz R; Priya S ACS Appl Mater Interfaces; 2019 Oct; 11(43):40107-40113. PubMed ID: 31577411 [TBL] [Abstract][Full Text] [Related]
2. High-Performance Thermoelectric Generators for Field Deployments. Kishore RA; Nozariasbmarz A; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Skin-Worn Thermoelectric Generators for Body Heat Energy Harvesting to Power Wearable Devices. Smith RI; Johnston ML Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7158-7161. PubMed ID: 34892751 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. Zhu S; Peng Y; Gao J; Miao L; Lai H; Liu C; Zhang J; Zhang Y; Zhou S; Koumoto K; Zhu T ACS Appl Mater Interfaces; 2022 Jan; 14(1):1045-1055. PubMed ID: 34965726 [TBL] [Abstract][Full Text] [Related]
5. High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting. Fan W; Shen Z; Zhang Q; Liu F; Fu C; Zhu T; Zhao X ACS Appl Mater Interfaces; 2022 May; 14(18):21224-21231. PubMed ID: 35482595 [TBL] [Abstract][Full Text] [Related]
6. Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat. Khoso NA; Jiao X; GuangYu X; Tian S; Wang J RSC Adv; 2021 Apr; 11(27):16675-16687. PubMed ID: 35479176 [TBL] [Abstract][Full Text] [Related]
7. Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators. Li W; Nozariasbmarz A; Kishore RA; Kang HB; Dettor C; Zhu H; Poudel B; Priya S ACS Appl Mater Interfaces; 2021 Nov; 13(45):53935-53944. PubMed ID: 34698486 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics. Fan W; An Z; Liu F; Gao Z; Zhang M; Fu C; Zhu T; Liu Q; Zhao X Adv Sci (Weinh); 2023 Apr; 10(12):e2206397. PubMed ID: 36799534 [TBL] [Abstract][Full Text] [Related]
9. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. Zadan M; Malakooti MH; Majidi C ACS Appl Mater Interfaces; 2020 Apr; 12(15):17921-17928. PubMed ID: 32208638 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Performance of Monolithic Chalcogenide Thermoelectric Modules for Energy Harvesting via Co-optimization of Experiment and Simulation. Lai H; Singh S; Peng Y; Hirata K; Ryu M; Ang AKR; Miao L; Takeuchi T ACS Appl Mater Interfaces; 2022 Aug; 14(34):38642-38650. PubMed ID: 35977402 [TBL] [Abstract][Full Text] [Related]
11. Development of Cu Ang AKR; Yamazaki I; Hirata K; Singh S; Matsunami M; Takeuchi T ACS Appl Mater Interfaces; 2023 Oct; 15(40):46962-46970. PubMed ID: 37768216 [TBL] [Abstract][Full Text] [Related]
12. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives. Tabaie Z; Omidvar A Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803 [TBL] [Abstract][Full Text] [Related]
13. High-Performance Thermoelectric Fabric Based on a Stitched Carbon Nanotube Fiber. Park KT; Lee T; Ko Y; Cho YS; Park CR; Kim H ACS Appl Mater Interfaces; 2021 Feb; 13(5):6257-6264. PubMed ID: 33508940 [TBL] [Abstract][Full Text] [Related]
14. A Cross-Plane Design for Wearable Thermoelectric Generators with High Stretchability and Output Performance. Yang J; Pu Y; Yu H; Ye DD; Liu X; Xin JH Small; 2023 Nov; 19(45):e2304529. PubMed ID: 37434332 [TBL] [Abstract][Full Text] [Related]
15. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Yang Y; Hu H; Chen Z; Wang Z; Jiang L; Lu G; Li X; Chen R; Jin J; Kang H; Chen H; Lin S; Xiao S; Zhao H; Xiong R; Shi J; Zhou Q; Xu S; Chen Y Nano Lett; 2020 Jun; 20(6):4445-4453. PubMed ID: 32368921 [TBL] [Abstract][Full Text] [Related]
16. Whole Fabric-Assisted Thermoelectric Devices for Wearable Electronics. Hou Y; Yang Y; Wang Z; Li Z; Zhang X; Bethers B; Xiong R; Guo H; Yu H Adv Sci (Weinh); 2022 Jan; 9(1):e2103574. PubMed ID: 34741444 [TBL] [Abstract][Full Text] [Related]
17. Study of Fiber-Based Wearable Energy Systems. Tao X Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417 [TBL] [Abstract][Full Text] [Related]
18. Experimental and Theoretical Investigation of the Effect of Filler Material on the Performance of Flexible and Rigid Thermoelectric Generators. Yusuf A; Demirci Y; Maras T; Moon SE; Pil-Im J; Kim JH; Ballikaya S ACS Appl Mater Interfaces; 2021 Dec; 13(51):61275-61285. PubMed ID: 34905915 [TBL] [Abstract][Full Text] [Related]
19. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Ren W; Sun Y; Zhao D; Aili A; Zhang S; Shi C; Zhang J; Geng H; Zhang J; Zhang L; Xiao J; Yang R Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33568483 [TBL] [Abstract][Full Text] [Related]
20. Developing instrumentation to characterize thermoelectric generator modules. Liu D; Li Q; Peng W; Zhu L; Gao H; Meng Q; Jin AJ Rev Sci Instrum; 2015 Mar; 86(3):034703. PubMed ID: 25832254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]