These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31577419)

  • 1. Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation.
    Ferreira R; Skrekas C; Hedin A; Sánchez BJ; Siewers V; Nielsen J; David F
    ACS Synth Biol; 2019 Nov; 8(11):2457-2463. PubMed ID: 31577419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.
    Nielsen J
    mBio; 2014 Nov; 5(6):e02153. PubMed ID: 25370498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae.
    David F; Nielsen J; Siewers V
    ACS Synth Biol; 2016 Mar; 5(3):224-33. PubMed ID: 26750662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensor-Coupled
    Qiu C; Huang M; Hou Y; Tao H; Zhao J; Shen Y; Bao X; Qi Q; Hou J
    mSystems; 2022 Apr; 7(2):e0136621. PubMed ID: 35229648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening.
    Li S; Si T; Wang M; Zhao H
    ACS Synth Biol; 2015 Dec; 4(12):1308-15. PubMed ID: 26149896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.
    Shi S; Chen Y; Siewers V; Nielsen J
    mBio; 2014 May; 5(3):e01130-14. PubMed ID: 24803522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing Malonyl-CoA Derived Product through Controlling the Transcription Regulators of Phospholipid Synthesis in Saccharomyces cerevisiae.
    Chen X; Yang X; Shen Y; Hou J; Bao X
    ACS Synth Biol; 2017 May; 6(5):905-912. PubMed ID: 28132498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput
    Fina A; Millard P; Albiol J; Ferrer P; Heux S
    Microb Cell Fact; 2023 Jun; 22(1):117. PubMed ID: 37380999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2
    Zhang Q; Yu S; Lyu Y; Zeng W; Zhou J
    ACS Synth Biol; 2021 May; 10(5):1166-1175. PubMed ID: 33877810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
    Jensen ED; Ferreira R; Jakočiūnas T; Arsovska D; Zhang J; Ding L; Smith JD; David F; Nielsen J; Jensen MK; Keasling JD
    Microb Cell Fact; 2017 Mar; 16(1):46. PubMed ID: 28298224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.
    Lian J; Zhao H
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):437-51. PubMed ID: 25306882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply.
    Liang WF; Cui LY; Cui JY; Yu KW; Yang S; Wang TM; Guan CG; Zhang C; Xing XH
    Metab Eng; 2017 Jan; 39():159-168. PubMed ID: 27919791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae.
    Tang X; Feng H; Chen WN
    Metab Eng; 2013 Mar; 16():95-102. PubMed ID: 23353549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31665284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.