These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 31577427)

  • 41. Graphite Recycling from Spent Lithium-Ion Batteries.
    Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S
    ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.
    Grützke M; Krüger S; Kraft V; Vortmann B; Rothermel S; Winter M; Nowak S
    ChemSusChem; 2015 Oct; 8(20):3433-8. PubMed ID: 26360935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring the Impact of Recycling on Demand-Supply Balance of Critical Materials in Green Transition: A Dynamic Multi-Regional Waste Input-Output Analysis.
    Della Bella S; Sen B; Cimpan C; Rocco MV; Liu G
    Environ Sci Technol; 2023 Jul; 57(28):10221-10230. PubMed ID: 37409626
    [TBL] [Abstract][Full Text] [Related]  

  • 44. China's vehicle electrification impacts on sales, fuel use, and battery material demand through 2050: Optimizing consumer and industry decisions.
    Ou S; Hsieh IL; He X; Lin Z; Yu R; Zhou Y; Bouchard J
    iScience; 2021 Nov; 24(11):103375. PubMed ID: 34825140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
    Zimmermann BM; Dura H; Baumann MJ; Weil MR
    Integr Environ Assess Manag; 2015 Jul; 11(3):425-34. PubMed ID: 25891858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pricing indirect emissions accelerates low-carbon transition of US light vehicle sector.
    Wolfram P; Weber S; Gillingham K; Hertwich EG
    Nat Commun; 2021 Dec; 12(1):7121. PubMed ID: 34880225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Addressing the range anxiety of battery electric vehicles with charging en route.
    Chakraborty P; Parker R; Hoque T; Cruz J; Du L; Wang S; Bhunia S
    Sci Rep; 2022 Apr; 12(1):5588. PubMed ID: 35379831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Dynamic Equilibrium Mechanism of Regional Lithium Flow for Transportation Electrification.
    Sun X; Hao H; Zhao F; Liu Z
    Environ Sci Technol; 2019 Jan; 53(2):743-751. PubMed ID: 30576596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cobalt recycling patents dataset selected using 'green' classification codes: Focus on the nickel manganese cobalt (NMC) batteries recycling.
    Priore R
    Data Brief; 2024 Jun; 54():110320. PubMed ID: 38550230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil.
    Cabral-Neto JP; de Mendonça Pimentel RM; Santos SM; Silva MM
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23070-23078. PubMed ID: 36316550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Commentary health risks from climate fix: The downside of energy storage batteries.
    Gottesfeld P
    Environ Res; 2019 Nov; 178():108677. PubMed ID: 31450149
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An overview of global power lithium-ion batteries and associated critical metal recycling.
    Miao Y; Liu L; Zhang Y; Tan Q; Li J
    J Hazard Mater; 2022 Mar; 425():127900. PubMed ID: 34896721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Integrated Model to Conduct Multi-Criteria Technology Assessments: The Case of Electric Vehicle Batteries.
    Baars J; Cerdas F; Heidrich O
    Environ Sci Technol; 2023 Mar; 57(12):5056-5067. PubMed ID: 36913650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications.
    Kamath D; Shukla S; Arsenault R; Kim HC; Anctil A
    Waste Manag; 2020 Jul; 113():497-507. PubMed ID: 32513441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels.
    Lin Y; Yu Z; Wang Y; Goh M
    J Environ Manage; 2023 Apr; 332():117354. PubMed ID: 36724597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Farming for battery metals.
    Nkrumah PN; Echevarria G; Erskine PD; van der Ent A
    Sci Total Environ; 2022 Jun; 827():154092. PubMed ID: 35219682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Materials Challenges in the Electric Vehicle Transition.
    He D; Keith DR; Kim HC; De Kleine R; Anderson J; Doolan M
    Environ Sci Technol; 2024 Jul; 58(28):12297-12303. PubMed ID: 38968232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Additional Emissions and Cost from Storing Electricity in Stationary Battery Systems.
    Schmidt TS; Beuse M; Zhang X; Steffen B; Schneider SF; Pena-Bello A; Bauer C; Parra D
    Environ Sci Technol; 2019 Apr; 53(7):3379-3390. PubMed ID: 30848899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.