BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31577432)

  • 1. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface.
    Schaefer CE; Culina V; Nguyen D; Field J
    Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    Huang D; Saleem H; Guo B; Brusseau ML
    Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A field study to assess the role of air-water interfacial sorption on PFAS leaching in an AFFF source area.
    Schaefer CE; Lavorgna GM; Lippincott DR; Nguyen D; Christie E; Shea S; O'Hare S; Lemes MCS; Higgins CP; Field J
    J Contam Hydrol; 2022 Jun; 248():104001. PubMed ID: 35367711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media.
    Abraham JEF; Mumford KG; Patch DJ; Weber KP
    Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of poly- and perfluoroalkyl substances (PFAS) in the surface microlayer and foam in synthetic and natural waters.
    Schaefer CE; Lemes MCS; Schwichtenberg T; Field JA
    J Hazard Mater; 2022 Oct; 440():129782. PubMed ID: 35988483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous Film-Forming Foams Exhibit Greater Interfacial Activity than PFOA, PFOS, or FOSA.
    Costanza J; Abriola LM; Pennell KD
    Environ Sci Technol; 2020 Nov; 54(21):13590-13597. PubMed ID: 32965107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Concentration- and Ionic-Strength-Dependent Air-Water Interfacial Partitioning Parameters of PFASs Using Quantitative Structure-Property Relationships (QSPRs).
    Stults JF; Choi YJ; Rockwell C; Schaefer CE; Nguyen DD; Knappe DRU; Illangasekare TH; Higgins CP
    Environ Sci Technol; 2023 Apr; 57(13):5203-5215. PubMed ID: 36962006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption behaviour of perfluoroalkyl substances in soils.
    Milinovic J; Lacorte S; Vidal M; Rigol A
    Sci Total Environ; 2015 Apr; 511():63-71. PubMed ID: 25531590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of perfluoroalkyl substance concentrations in pregnant women by socio-demographic and dietary factors in a Spanish birth cohort.
    Manzano-Salgado CB; Casas M; Lopez-Espinosa MJ; Ballester F; Martinez D; Ibarluzea J; Santa-Marina L; Schettgen T; Vioque J; Sunyer J; Vrijheid M
    Environ Int; 2016; 92-93():357-65. PubMed ID: 27132161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions.
    Høisæter Å; Pfaff A; Breedveld GD
    J Contam Hydrol; 2019 Apr; 222():112-122. PubMed ID: 30878240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2022 May; 819():151987. PubMed ID: 34843785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community.
    Zhang DQ; Wang M; He Q; Niu X; Liang Y
    Environ Pollut; 2020 Feb; 257():113575. PubMed ID: 31733970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones.
    Hunter Anderson R; Adamson DT; Stroo HF
    J Contam Hydrol; 2019 Jan; 220():59-65. PubMed ID: 30527585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Nov; 796():148893. PubMed ID: 34265607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.