These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31577443)
1. Self-Assembly of Ordered Microparticle Monolayers from Drying a Droplet on a Liquid Substrate. Li W; Ji W; Lan D; Wang Y J Phys Chem Lett; 2019 Oct; 10(20):6184-6188. PubMed ID: 31577443 [TBL] [Abstract][Full Text] [Related]
2. Modeling Evaporation and Particle Assembly in Colloidal Droplets. Zhao M; Yong X Langmuir; 2017 Jun; 33(23):5734-5744. PubMed ID: 28548503 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast Self-Assembly of Colloidal Photonic Crystals during Low-Pressure-Assisted Evaporation of Droplets. Zhang C; Li W; Wang Y J Phys Chem Lett; 2022 May; 13(17):3776-3780. PubMed ID: 35446036 [TBL] [Abstract][Full Text] [Related]
5. Dynamical Clustering and Band Formation of Particles in a Marangoni Vortexing Droplet. Thokchom AK; Shin S Langmuir; 2019 Jul; 35(27):8977-8983. PubMed ID: 31188004 [TBL] [Abstract][Full Text] [Related]
6. Pattern Formation in Drying Sessile and Pendant Droplet: Interactions of Gravity Settling, Interface Shrinkage, and Capillary Flow. Li W; Ji W; Sun H; Lan D; Wang Y Langmuir; 2019 Jan; 35(1):113-119. PubMed ID: 30525644 [TBL] [Abstract][Full Text] [Related]
7. Probing the Colloidal Particle Dynamics in Drying Sessile Droplets. Al-Milaji KN; Zhao H Langmuir; 2019 Feb; 35(6):2209-2220. PubMed ID: 30630314 [TBL] [Abstract][Full Text] [Related]
8. Evaporation of Initially Heated Sessile Droplets and the Resultant Dried Colloidal Deposits on Substrates Held at Ambient Temperature. Chatterjee S; Kumar M; Murallidharan JS; Bhardwaj R Langmuir; 2020 Jul; 36(29):8407-8421. PubMed ID: 32602342 [TBL] [Abstract][Full Text] [Related]
9. Fast evaporation of spreading droplets of colloidal suspensions. Maki KL; Kumar S Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573 [TBL] [Abstract][Full Text] [Related]
10. Tailoring crack morphology in coffee-ring deposits via substrate heating. Lama H; Basavaraj MG; Satapathy DK Soft Matter; 2017 Aug; 13(32):5445-5452. PubMed ID: 28714511 [TBL] [Abstract][Full Text] [Related]
11. Evaporation and deposition of inclined colloidal droplets. Kim JY; Gonçalves M; Jung N; Kim H; Weon BM Sci Rep; 2021 Sep; 11(1):17784. PubMed ID: 34493801 [TBL] [Abstract][Full Text] [Related]
12. Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets. Das S; Dey A; Reddy G; Sarma DD J Phys Chem Lett; 2017 Oct; 8(19):4704-4709. PubMed ID: 28885853 [TBL] [Abstract][Full Text] [Related]
13. Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption. Ren J; Crivoi A; Duan F Langmuir; 2020 Dec; 36(49):15064-15074. PubMed ID: 33317269 [TBL] [Abstract][Full Text] [Related]
14. Rate-dependent interface capture beyond the coffee-ring effect. Li Y; Yang Q; Li M; Song Y Sci Rep; 2016 Apr; 6():24628. PubMed ID: 27090820 [TBL] [Abstract][Full Text] [Related]