These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31577531)

  • 1. Spike threshold adaptation diversifies neuronal operating modes in the auditory brain stem.
    Lubejko ST; Fontaine B; Soueidan SE; MacLeod KM
    J Neurophysiol; 2019 Dec; 122(6):2576-2590. PubMed ID: 31577531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kv1 channels regulate variations in spike patterning and temporal reliability in the avian cochlear nucleus angularis.
    Baldassano JF; MacLeod KM
    J Neurophysiol; 2022 Jan; 127(1):116-129. PubMed ID: 34817286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic firing properties in the avian auditory brain stem allow both integration and encoding of temporally modulated noisy inputs in vitro.
    Kreeger LJ; Arshed A; MacLeod KM
    J Neurophysiol; 2012 Nov; 108(10):2794-809. PubMed ID: 22914650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus.
    Brown DH; Hyson RL
    J Neurophysiol; 2019 Mar; 121(3):908-927. PubMed ID: 30649984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of firing rate and spike-timing precision in the avian cochlear nucleus.
    Kuznetsova MS; Higgs MH; Spain WJ
    J Neurosci; 2008 Nov; 28(46):11906-15. PubMed ID: 19005056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information.
    Ahn J; Kreeger LJ; Lubejko ST; Butts DA; MacLeod KM
    J Neurophysiol; 2014 Jun; 111(11):2320-31. PubMed ID: 24623512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resurgent sodium current promotes action potential firing in the avian auditory brainstem.
    Hong H; Lu T; Wang X; Wang Y; Sanchez JT
    J Physiol; 2018 Feb; 596(3):423-443. PubMed ID: 29193076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.
    Fontaine B; MacLeod KM; Lubejko ST; Steinberg LJ; Köppl C; Peña JL
    J Neurophysiol; 2014 Jul; 112(2):430-45. PubMed ID: 24790170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabotropic glutamate and GABA receptors modulate cellular excitability and glutamatergic transmission in chicken cochlear nucleus angularis neurons.
    Shi W; Lu Y
    Hear Res; 2017 Mar; 346():14-24. PubMed ID: 28104407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting spike timing in highly synchronous auditory neurons at different sound levels.
    Fontaine B; Benichoux V; Joris PX; Brette R
    J Neurophysiol; 2013 Oct; 110(7):1672-88. PubMed ID: 23864375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kv3 K
    Olsen T; Capurro A; Pilati N; Large CH; Hamann M
    Neuropharmacology; 2018 May; 133():319-333. PubMed ID: 29421326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken.
    Fukui I; Ohmori H
    J Physiol; 2003 Apr; 548(Pt 1):219-32. PubMed ID: 12576492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonotopic Variation of the T-Type Ca
    Fukaya R; Yamada R; Kuba H
    J Neurosci; 2018 Jan; 38(2):335-346. PubMed ID: 29167400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow spike frequency adaptation in neurons of the rat subthalamic nucleus.
    Barraza D; Kita H; Wilson CJ
    J Neurophysiol; 2009 Dec; 102(6):3689-97. PubMed ID: 19846619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.