These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Susceptibility mapping of groundwater salinity using machine learning models. Mosavi A; Sajedi Hosseini F; Choubin B; Taromideh F; Ghodsi M; Nazari B; Dineva AA Environ Sci Pollut Res Int; 2021 Mar; 28(9):10804-10817. PubMed ID: 33099737 [TBL] [Abstract][Full Text] [Related]
3. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Naghibi SA; Pourghasemi HR; Dixon B Environ Monit Assess; 2016 Jan; 188(1):44. PubMed ID: 26687087 [TBL] [Abstract][Full Text] [Related]
4. Scrutinization of land subsidence rate using a supportive predictive model: Incorporating radar interferometry and ensemble soft-computing. Choubin B; Shirani K; Hosseini FS; Taheri J; Rahmati O J Environ Manage; 2023 Nov; 345():118685. PubMed ID: 37517093 [TBL] [Abstract][Full Text] [Related]
5. Spatial modeling of land subsidence using machine learning models and statistical methods. Sekkeravani MA; Bazrafshan O; Pourghasemi HR; Holisaz A Environ Sci Pollut Res Int; 2022 Apr; 29(19):28866-28883. PubMed ID: 34993808 [TBL] [Abstract][Full Text] [Related]
6. Estimate earth fissure hazard based on machine learning in the Qa' Jahran Basin, Yemen. Al-Masnay YA; Al-Areeq NM; Ullah K; Al-Aizari AR; Rahman M; Wang C; Zhang J; Liu X Sci Rep; 2022 Dec; 12(1):21936. PubMed ID: 36536056 [TBL] [Abstract][Full Text] [Related]
7. Using machine learning algorithms to map the groundwater recharge potential zones. Pourghasemi HR; Sadhasivam N; Yousefi S; Tavangar S; Ghaffari Nazarlou H; Santosh M J Environ Manage; 2020 Jul; 265():110525. PubMed ID: 32275245 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
9. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Gayen A; Pourghasemi HR; Saha S; Keesstra S; Bai S Sci Total Environ; 2019 Jun; 668():124-138. PubMed ID: 30851678 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of machine learning algorithms for groundwater quality modeling. Sahour S; Khanbeyki M; Gholami V; Sahour H; Kahvazade I; Karimi H Environ Sci Pollut Res Int; 2023 Apr; 30(16):46004-46021. PubMed ID: 36715809 [TBL] [Abstract][Full Text] [Related]
11. Groundwater potential assessment using GIS-based ensemble learning models in Guanzhong Basin, China. Wang Z; Wang J; Yu D; Chen K Environ Monit Assess; 2023 May; 195(6):690. PubMed ID: 37199816 [TBL] [Abstract][Full Text] [Related]
12. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Arabameri A; Rezaei K; Cerda A; Lombardo L; Rodrigo-Comino J Sci Total Environ; 2019 Mar; 658():160-177. PubMed ID: 30577015 [TBL] [Abstract][Full Text] [Related]
13. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Liu Q; Gui D; Zhang L; Niu J; Dai H; Wei G; Hu BX Sci Total Environ; 2022 Jul; 831():154902. PubMed ID: 35364142 [TBL] [Abstract][Full Text] [Related]
14. Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Rizeei HM; Azeez OS; Pradhan B; Khamees HH Environ Monit Assess; 2018 Oct; 190(11):633. PubMed ID: 30288624 [TBL] [Abstract][Full Text] [Related]
15. Groundwater salinity modeling and mapping using machine learning approaches: a case study in Sidi Okba region, Algeria. Boudibi S; Fadlaoui H; Hiouani F; Bouzidi N; Aissaoui A; Khomri ZE Environ Sci Pollut Res Int; 2024 Aug; 31(36):48955-48971. PubMed ID: 39042194 [TBL] [Abstract][Full Text] [Related]
16. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Rodriguez-Galiano V; Mendes MP; Garcia-Soldado MJ; Chica-Olmo M; Ribeiro L Sci Total Environ; 2014 Apr; 476-477():189-206. PubMed ID: 24463255 [TBL] [Abstract][Full Text] [Related]
17. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Golkarian A; Naghibi SA; Kalantar B; Pradhan B Environ Monit Assess; 2018 Feb; 190(3):149. PubMed ID: 29455381 [TBL] [Abstract][Full Text] [Related]
18. Probability mapping of groundwater contamination by hydrocarbon from the deep oil reservoirs using GIS-based machine-learning algorithms: a case study of the Dammam aquifer (middle of Iraq). Al-Mayahi HM; Al-Abadi AM; Fryar AE Environ Sci Pollut Res Int; 2021 Mar; 28(11):13736-13751. PubMed ID: 33196994 [TBL] [Abstract][Full Text] [Related]
19. Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms. Zhao R; Arabameri A; Santosh M Environ Sci Pollut Res Int; 2024 Feb; 31(10):15443-15466. PubMed ID: 38300491 [TBL] [Abstract][Full Text] [Related]
20. A machine learning framework for spatio-temporal vulnerability mapping of groundwaters to nitrate in a data scarce region in Lenjanat Plain, Iran. Jalali R; Tishehzan P; Hashemi H Environ Sci Pollut Res Int; 2024 Jun; 31(29):42088-42110. PubMed ID: 38862797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]