These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 31578002)

  • 1. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network.
    Demin VA; Nekhaev DV; Surazhevsky IA; Nikiruy KE; Emelyanov AV; Nikolaev SN; Rylkov VV; Kovalchuk MV
    Neural Netw; 2021 Feb; 134():64-75. PubMed ID: 33291017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memristor-based spiking neural network with online reinforcement learning.
    Vlasov D; Minnekhanov A; Rybka R; Davydov Y; Sboev A; Serenko A; Ilyasov A; Demin V
    Neural Netw; 2023 Sep; 166():512-523. PubMed ID: 37579580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.
    Bill J; Legenstein R
    Front Neurosci; 2014; 8():412. PubMed ID: 25565943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors.
    Prezioso M; Merrikh Bayat F; Hoskins B; Likharev K; Strukov D
    Sci Rep; 2016 Feb; 6():21331. PubMed ID: 26893175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.
    Covi E; Brivio S; Serb A; Prodromakis T; Fanciulli M; Spiga S
    Front Neurosci; 2016; 10():482. PubMed ID: 27826226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm.
    Juarez-Lora A; Ponce-Ponce VH; Sossa H; Rubio-Espino E
    Front Neurorobot; 2022; 16():904017. PubMed ID: 35663727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical memristive neural networks and associative self-learning architectures using biomimetic devices.
    Zivasatienraj B; Doolittle WA
    Front Neurosci; 2023; 17():1153183. PubMed ID: 37152603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex.
    Zamarreño-Ramos C; Camuñas-Mesa LA; Pérez-Carrasco JA; Masquelier T; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2011; 5():26. PubMed ID: 21442012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organization of an inhomogeneous memristive hardware for sequence learning.
    Payvand M; Moro F; Nomura K; Dalgaty T; Vianello E; Nishi Y; Indiveri G
    Nat Commun; 2022 Oct; 13(1):5793. PubMed ID: 36184665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics.
    Brivio S; Conti D; Nair MV; Frascaroli J; Covi E; Ricciardi C; Indiveri G; Spiga S
    Nanotechnology; 2019 Jan; 30(1):015102. PubMed ID: 30378572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parylene Based Memristive Devices with Multilevel Resistive Switching for Neuromorphic Applications.
    Minnekhanov AA; Emelyanov AV; Lapkin DA; Nikiruy KE; Shvetsov BS; Nesmelov AA; Rylkov VV; Demin VA; Erokhin VV
    Sci Rep; 2019 Jul; 9(1):10800. PubMed ID: 31346245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STDP and STDP variations with memristors for spiking neuromorphic learning systems.
    Serrano-Gotarredona T; Masquelier T; Prodromakis T; Indiveri G; Linares-Barranco B
    Front Neurosci; 2013; 7():2. PubMed ID: 23423540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memristive Hebbian plasticity model: device requirements for the emulation of Hebbian plasticity based on memristive devices.
    Ziegler M; Riggert C; Hansen M; Bartsch T; Kohlstedt H
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):197-206. PubMed ID: 25879966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.