These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31578005)

  • 1. Crossover from type I to type II regime of mesoscopic superconductors of the first group.
    Cadorim LR; Calsolari TO; Zadorosny R; Sardella E
    J Phys Condens Matter; 2020 Feb; 32(9):095304. PubMed ID: 31578005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations.
    Palonen H; Jäykkä J; Paturi P
    J Phys Condens Matter; 2013 Sep; 25(38):385702. PubMed ID: 23995237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vortex Interactions and Clustering in Thin Superconductors.
    Córdoba-Camacho WY; Vagov A; Shanenko AA; Aguiar JA; Vasenko AS; Stolyarov VS
    J Phys Chem Lett; 2021 May; 12(17):4172-4179. PubMed ID: 33896186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of thermal gradients for control of vortex matter in mesoscopic superconductors.
    Duarte ECS; Presotto A; Okimoto D; Souto VS; Sardella E; Zadorosny R
    J Phys Condens Matter; 2019 Oct; 31(40):405901. PubMed ID: 31247610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg-Landau equations.
    Jafri HM; Ma X; Zhao C; Liang D; Huang H; Liu Z; Chen LQ
    J Phys Condens Matter; 2017 Dec; 29(50):505701. PubMed ID: 28925380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconductivity and the upper critical field in the chiral noncentrosymmetric superconductor NbRh
    Mayoh DA; Pearce MJ; Götze K; Hillier AD; Balakrishnan G; Lees MR
    J Phys Condens Matter; 2019 Nov; 31(46):465601. PubMed ID: 31425149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetization measurements and Ginzburg-Landau simulations of micron-size β-tin samples: evidence for an unusual critical behavior of mesoscopic type-I superconductors.
    Müller A; Milošević MV; Dale SE; Engbarth MA; Bending SJ
    Phys Rev Lett; 2012 Nov; 109(19):197003. PubMed ID: 23215418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of superconducting vortex clusters in S/F hybrids.
    Di Giorgio C; Bobba F; Cucolo AM; Scarfato A; Moore SA; Karapetrov G; D'Agostino D; Novosad V; Yefremenko V; Iavarone M
    Sci Rep; 2016 Dec; 6():38557. PubMed ID: 27934898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range vortex transfer in superconducting nanowires.
    Córdoba R; Orús P; Jelić ŽL; Sesé J; Ibarra MR; Guillamón I; Vieira S; Palacios JJ; Suderow H; Milosević MV; De Teresa JM
    Sci Rep; 2019 Aug; 9(1):12386. PubMed ID: 31455848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic superconductor as a ballistic quantum switch.
    Mel'nikov AS; Vinokur VM
    Nature; 2002 Jan; 415(6867):60-2. PubMed ID: 11780114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic-Field-Induced Re-entrance of Superconductivity in Ta
    Zhang E; Xu X; Huang C; Zou YC; Ai L; Liu S; Leng P; Jia Z; Zhang Y; Zhao M; Li Z; Yang Y; Liu J; Haigh SJ; Mao Z; Xiu F
    Nano Lett; 2021 Jan; 21(1):288-297. PubMed ID: 33346673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of two length scales on the properties of MgB(2) for arbitrary applied magnetic field.
    Karmakar M; Dey B
    J Phys Condens Matter; 2010 May; 22(20):205701. PubMed ID: 21393710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ginzburg-Landau-type theory of spin superconductivity.
    Bao ZQ; Xie XC; Sun QF
    Nat Commun; 2013; 4():2951. PubMed ID: 24335888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field.
    Oripov B; Anlage SM
    Phys Rev E; 2020 Mar; 101(3-1):033306. PubMed ID: 32289922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for isotropic s-wave superconductivity in high-entropy alloys.
    Leung CKW; Zhang X; von Rohr F; Lortz R; Jäck B
    Sci Rep; 2022 Jul; 12(1):12773. PubMed ID: 35896621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angular dependence of vortex instability in a layered superconductor: the case study of Fe(Se,Te) material.
    Grimaldi G; Leo A; Nigro A; Pace S; Braccini V; Bellingeri E; Ferdeghini C
    Sci Rep; 2018 Mar; 8(1):4150. PubMed ID: 29515198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
    Curran PJ; Desoky WM; Milosević MV; Chaves A; Laloë JB; Moodera JS; Bending SJ
    Sci Rep; 2015 Oct; 5():15569. PubMed ID: 26492969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-I superconductivity in KBi₂ single crystals.
    Sun S; Liu K; Lei H
    J Phys Condens Matter; 2016 Mar; 28(8):085701. PubMed ID: 26836956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.
    Guo H; Phillips CL; Peterka T; Karpeyev D; Glatz A
    IEEE Trans Vis Comput Graph; 2016 Jan; 22(1):827-36. PubMed ID: 26529730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting Properties in Arrays of Nanostructured β-Gallium.
    Moura KO; Pirota KR; Béron F; Jesus CBR; Rosa PFS; Tobia D; Pagliuso PG; Lima OF
    Sci Rep; 2017 Nov; 7(1):15306. PubMed ID: 29127403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.