These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31578064)

  • 1. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    J Phys Chem Lett; 2019 Oct; 10(20):6331-6338. PubMed ID: 31578064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices.
    Novák J; Banerjee R; Kornowski A; Jankowski M; André A; Weller H; Schreiber F; Scheele M
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22526-33. PubMed ID: 27504626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Importance of Unbound Ligand in Nanocrystal Superlattice Formation.
    Winslow SW; Swan JW; Tisdale WA
    J Am Chem Soc; 2020 May; 142(21):9675-9685. PubMed ID: 32401509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.
    Maiti S; André A; Banerjee R; Hagenlocher J; Konovalov O; Schreiber F; Scheele M
    J Phys Chem Lett; 2018 Feb; 9(4):739-744. PubMed ID: 29365268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering.
    Weidman MC; Smilgies DM; Tisdale WA
    Nat Mater; 2016 Jul; 15(7):775-81. PubMed ID: 26998914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Oriented Colloidal Crystals from Capillary Assembly of Polymer-Tethered Gold Nanoparticles.
    Gao Y; Zhou Y; Xu X; Chen C; Xiong B; Zhu J
    Small; 2022 Apr; 18(13):e2106880. PubMed ID: 35146905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering.
    Marino E; Rosen DJ; Yang S; Tsai EHR; Murray CB
    Nano Lett; 2023 May; 23(10):4250-4257. PubMed ID: 37184728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body centered tetragonal nanoparticle superlattices: why and when they form?
    Missoni L; Tagliazucchi M
    Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.
    Bian K; Wang Z; Hanrath T
    J Am Chem Soc; 2012 Jul; 134(26):10787-90. PubMed ID: 22702237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ small-angle X-ray scattering environment for studying nanocrystal self-assembly upon controlled solvent evaporation.
    Lokteva I; Walther M; Koof M; Grübel G; Lehmkühler F
    Rev Sci Instrum; 2019 Mar; 90(3):036103. PubMed ID: 30927793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered structure rearrangements in heated gold nanocrystal superlattices.
    Goodfellow BW; Rasch MR; Hessel CM; Patel RN; Smilgies DM; Korgel BA
    Nano Lett; 2013; 13(11):5710-4. PubMed ID: 24131332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals.
    Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2013 Oct; 4(21):. PubMed ID: 24327828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.