BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31579268)

  • 1. Soil carbonyl sulfide exchange in relation to microbial community composition: insights from a managed grassland soil amendment experiment.
    Kitz F; Gómez-Brandón M; Eder B; Etemadi M; Spielmann FM; Hammerle A; Insam H; Wohlfahrt G
    Soil Biol Biochem; 2019 May; 135():28-37. PubMed ID: 31579268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ soil COS exchange of a temperate mountain grassland under simulated drought.
    Kitz F; Gerdel K; Hammerle A; Laterza T; Spielmann FM; Wohlfahrt G
    Oecologia; 2017 Mar; 183(3):851-860. PubMed ID: 28070699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil exchange rates of COS and CO
    Meredith LK; Ogée J; Boye K; Singer E; Wingate L; von Sperber C; Sengupta A; Whelan M; Pang E; Keiluweit M; Brüggemann N; Berry JA; Welander PV
    ISME J; 2019 Feb; 13(2):290-300. PubMed ID: 30214028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains.
    Maseyk K; Berry JA; Billesbach D; Campbell JE; Torn MS; Zahniser M; Seibt U
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9064-9. PubMed ID: 24927594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root and rhizosphere contribution to the net soil COS exchange.
    Kitz F; Wachter H; Spielmann F; Hammerle A; Wohlfahrt G
    Plant Soil; 2024; 498(1-2):325-339. PubMed ID: 38665878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A top-down approach of sources and non-photosynthetic sinks of carbonyl sulfide from atmospheric measurements over multiple years in the Paris region (France).
    Belviso S; Lebegue B; Ramonet M; Kazan V; Pison I; Berchet A; Delmotte M; Yver-Kwok C; Montagne D; Ciais P
    PLoS One; 2020; 15(2):e0228419. PubMed ID: 32040521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing canopy performance using carbonyl sulfide measurements.
    Yang F; Qubaja R; Tatarinov F; Rotenberg E; Yakir D
    Glob Chang Biol; 2018 Aug; 24(8):3486-3498. PubMed ID: 29575496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonyl sulfide (COS) and carbon disulfide (CS
    Jing W; Wang L; Li D; Bao X; Shi Y
    Environ Geochem Health; 2019 Oct; 41(5):2195-2207. PubMed ID: 30877628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent responses of CO
    Zhang K; Yan Z; Li M; Kang E; Li Y; Yan L; Zhang X; Wang J; Kang X
    Sci Total Environ; 2021 Dec; 801():149604. PubMed ID: 34467923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange.
    Stimler K; Montzka SA; Berry JA; Rudich Y; Yakir D
    New Phytol; 2010 Jun; 186(4):869-878. PubMed ID: 20298480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf relative uptake of carbonyl sulfide to CO
    Sun W; Berry JA; Yakir D; Seibt U
    New Phytol; 2022 Sep; 235(5):1729-1742. PubMed ID: 35478172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of increasing organic nitrogen inputs on CO
    Chen J; Zhang Y; Yang Y; Tao T; Sun X; Guo P
    Environ Pollut; 2021 Jan; 268(Pt A):115822. PubMed ID: 33130444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance.
    Stimler K; Berry JA; Yakir D
    Plant Physiol; 2012 Jan; 158(1):524-30. PubMed ID: 22106096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bryophyte gas-exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light.
    Gimeno TE; Ogée J; Royles J; Gibon Y; West JB; Burlett R; Jones SP; Sauze J; Wohl S; Benard C; Genty B; Wingate L
    New Phytol; 2017 Aug; 215(3):965-976. PubMed ID: 28467665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonyl sulfide and dimethyl sulfide fluxes in an urban lawn and adjacent bare soil in Guangzhou, China.
    Yi Z; Wang X
    J Environ Sci (China); 2011; 23(5):784-9. PubMed ID: 21790051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercomparison of methods to estimate gross primary production based on CO
    Kohonen KM; Dewar R; Tramontana G; Mauranen A; Kolari P; Kooijmans LMJ; Papale D; Vesala T; Mammarella I
    Biogeosciences; 2022 Sep; 19(17):4067-4088. PubMed ID: 36171741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic and Abiotic Contribution to Diurnal Soil CO
    Wang ZY; Xie JB; Wang YG; Li Y
    Sci Rep; 2020 Mar; 10(1):5396. PubMed ID: 32214162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.
    Breulmann M; Masyutenko NP; Kogut BM; Schroll R; Dörfler U; Buscot F; Schulz E
    Sci Total Environ; 2014 Nov; 497-498():29-37. PubMed ID: 25112822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal Carbonyl Sulfide Hydrolase of Trichoderma harzianum Strain THIF08 and Its Relationship with Clade D β-Carbonic Anhydrases.
    Masaki Y; Iizuka R; Kato H; Kojima Y; Ogawa T; Yoshida M; Matsushita Y; Katayama Y
    Microbes Environ; 2021; 36(2):. PubMed ID: 34024869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland.
    Qi Q; Zhao J; Tian R; Zeng Y; Xie C; Gao Q; Dai T; Wang H; He JS; Konstantinidis KT; Yang Y; Zhou J; Guo X
    Glob Chang Biol; 2022 Dec; 28(23):6906-6920. PubMed ID: 36191158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.