BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31579344)

  • 1. Strength and Similarity Guided Group-level Brain Functional Network Construction for MCI Diagnosis.
    Zhang Y; Zhang H; Chen X; Liu M; Zhu X; Lee SW; Shen D
    Pattern Recognit; 2019 Apr; 88():421-430. PubMed ID: 31579344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-subject Similarity Guided Brain Network Modeling for MCI Diagnosis.
    Zhang Y; Zhang H; Chen X; Liu M; Zhu X; Shen D
    Mach Learn Med Imaging; 2017 Sep; 10541():168-175. PubMed ID: 30320309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-Retest Reliability of "High-Order" Functional Connectivity in Young Healthy Adults.
    Zhang H; Chen X; Zhang Y; Shen D
    Front Neurosci; 2017; 11():439. PubMed ID: 28824362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment.
    Zhang H; Giannakopoulos P; Haller S; Lee SW; Qiu S; Shen D
    Neuroinformatics; 2019 Oct; 17(4):547-561. PubMed ID: 30739281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification.
    Yu R; Zhang H; An L; Chen X; Wei Z; Shen D
    Hum Brain Mapp; 2017 May; 38(5):2370-2383. PubMed ID: 28150897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Pairwise-Similarity Guided Sparse Functional Connectivity Network for MCI Classification.
    Chen X; Zhang H; Zhang Y; Yang J; Shen D
    Asian Conf Pattern Recognit; 2018 Nov; 2017():917-922. PubMed ID: 30627592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection forĀ Mild Cognitive Impairment.
    Zhang H; Chen X; Shi F; Li G; Kim M; Giannakopoulos P; Haller S; Shen D
    J Alzheimers Dis; 2016 Oct; 54(3):1095-1112. PubMed ID: 27567817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiview Feature Learning With Multiatlas-Based Functional Connectivity Networks for MCI Diagnosis.
    Zhang Y; Zhang H; Adeli E; Chen X; Liu M; Shen D
    IEEE Trans Cybern; 2022 Jul; 52(7):6822-6833. PubMed ID: 33306476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble Hierarchical High-Order Functional Connectivity Networks for MCI Classification.
    Chen X; Zhang H; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9901():18-25. PubMed ID: 28936492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation-Weighted Sparse Group Representation for Brain Network Construction in MCI Classification.
    Yu R; Zhang H; An L; Chen X; Wei Z; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():37-45. PubMed ID: 28642938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weighted Graph Regularized Sparse Brain Network Construction for MCI Identification.
    Yu R; Qiao L; Chen M; Lee SW; Fei X; Shen D
    Pattern Recognit; 2019 Jun; 90():220-231. PubMed ID: 31579345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognitive Impairment.
    Zhang Y; Zhang H; Chen X; Shen D
    Connectomics Neuroimaging (2017); 2017; 10511():9-16. PubMed ID: 30345426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.
    Zhang Y; Zhang H; Chen X; Lee SW; Shen D
    Sci Rep; 2017 Jul; 7(1):6530. PubMed ID: 28747782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain connectivity hyper-network for MCI classification.
    Jie B; Shen D; Zhang D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):724-32. PubMed ID: 25485444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature Selection and Combination of Information in the Functional Brain Connectome for Discrimination of Mild Cognitive Impairment and Analyses of Altered Brain Patterns.
    Xu X; Li W; Mei J; Tao M; Wang X; Zhao Q; Liang X; Wu W; Ding D; Wang P
    Front Aging Neurosci; 2020; 12():28. PubMed ID: 32140102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of brain functional connectivity network in MS patients constructed by modular structure of sparse weights from cognitive task-related fMRI.
    Miri Ashtiani SN; Behnam H; Daliri MR; Hossein-Zadeh GA; Mehrpour M
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):921-938. PubMed ID: 31452057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification.
    Li Y; Liu J; Gao X; Jie B; Kim M; Yap PT; Wee CY; Shen D
    Med Image Anal; 2019 Feb; 52():80-96. PubMed ID: 30472348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyper-connectivity of functional networks for brain disease diagnosis.
    Jie B; Wee CY; Shen D; Zhang D
    Med Image Anal; 2016 Aug; 32():84-100. PubMed ID: 27060621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.