These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31579395)
1. Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter. Yang Q; Lee A; Bentley RT; Lee H IEEE Sens J; 2019 Feb; 19(4):1373-1378. PubMed ID: 31579395 [TBL] [Abstract][Full Text] [Related]
2. Towards smart self-clearing glaucoma drainage device. Park H; Raffiee AH; John SWM; Ardekani AM; Lee H Microsyst Nanoeng; 2018; 4():35. PubMed ID: 31057923 [TBL] [Abstract][Full Text] [Related]
3. Anti-biofouling implantable catheter using thin-film magnetic microactuators. Yang Q; Park H; Nguyen TNH; Rhoads JF; Lee A; Bentley RT; Judy JW; Lee H Sens Actuators B Chem; 2018 Nov; 273():1694-1704. PubMed ID: 34276138 [TBL] [Abstract][Full Text] [Related]
4. Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters. Lee H; Kolahi K; Bergsneider M; Judy JW J Microelectromech Syst; 2014 Aug; 23(4):795-802. PubMed ID: 29151776 [TBL] [Abstract][Full Text] [Related]
5. Polyimide-based magnetic microactuators for biofouling removal. Qi Yang ; Tran Nguyen ; Chunan Liu ; Miller J; Rhoads JF; Linnes J; Hyowon Lee Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5757-5760. PubMed ID: 28269562 [TBL] [Abstract][Full Text] [Related]
6. Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study. Lee SA; Pinney JR; Khialeeva E; Bergsneider M; Judy JW Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():947-50. PubMed ID: 19162814 [TBL] [Abstract][Full Text] [Related]
7. Magnetic microactuators for MEMS-enabled ventricular catheters for hydrocephalus. Lee SA; Vasquez DJ; Bergsneider M; Judy JW Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2494-7. PubMed ID: 17946960 [TBL] [Abstract][Full Text] [Related]
8. Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke treatment. Yang Q; Enríquez Á; Devathasan D; Thompson CA; Nayee D; Harris R; Satoski D; Obeng-Gyasi B; Lee A; Bentley RT; Lee H Nat Commun; 2022 Jan; 13(1):520. PubMed ID: 35082280 [TBL] [Abstract][Full Text] [Related]
9. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion. Lee SA; Lee H; Pinney JR; Khialeeva E; Bergsneider M; Judy JW J Micromech Microeng; 2011 May; 21(5):54006. PubMed ID: 21886945 [TBL] [Abstract][Full Text] [Related]
10. Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices. Hyunsu Park ; John S; Hyowon Lee Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4212-4215. PubMed ID: 28269212 [TBL] [Abstract][Full Text] [Related]
11. Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force-Reeled Silks. Lin S; Wang Z; Chen X; Ren J; Ling S Adv Sci (Weinh); 2020 Mar; 7(6):1902743. PubMed ID: 32195093 [TBL] [Abstract][Full Text] [Related]
12. Programming Deformations of 3D Microstructures: Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers. Li S; Aizenberg M; Lerch MM; Aizenberg J Acc Mater Res; 2023 Dec; 4(12):1008-1019. PubMed ID: 38148997 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Multi-Material Pneumatic Actuators and Microactuators Using Stereolithography. Song Q; Chen Y; Hou P; Zhu P; Helmer D; Kotz-Helmer F; Rapp BE Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837944 [TBL] [Abstract][Full Text] [Related]
14. Self-Assembled Microactuators Using Chiral Liquid Crystal Elastomers. Lee YJ; Abdelrahman MK; Kalairaj MS; Ware TH Small; 2023 Oct; 19(41):e2302774. PubMed ID: 37291979 [TBL] [Abstract][Full Text] [Related]
15. Erratum: Noninvasive and Invasive Renal Hypoxia Monitoring in a Porcine Model of Hemorrhagic Shock. J Vis Exp; 2023 May; (195):. PubMed ID: 37159242 [TBL] [Abstract][Full Text] [Related]
16. Development of an In Vitro Hemorrhagic Hydrocephalus Model for Functional Evaluation of Magnetic Microactuators Against Shunt Obstructions. Devathasan D; Bentley RT; Enriquez A; Yang Q; Thomovsky SA; Thompson C; Lee AE; Lee H World Neurosurg; 2021 Nov; 155():e294-e300. PubMed ID: 34418611 [TBL] [Abstract][Full Text] [Related]
17. Hydrogel-based microactuators with remote-controlled locomotion and fast Pb2+-response for micromanipulation. Liu YM; Wang W; Zheng WC; Ju XJ; Xie R; Zerrouki D; Deng NN; Chu LY ACS Appl Mater Interfaces; 2013 Aug; 5(15):7219-26. PubMed ID: 23865475 [TBL] [Abstract][Full Text] [Related]
18. MRI compatibility of microfabricated magnetic actuators for implantable catheters: Mechanical evaluations. Lee H; Xu Q; Ephrati J; Bergsneider M; Judy JW Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():907-10. PubMed ID: 21096979 [TBL] [Abstract][Full Text] [Related]
19. Programming magnetic anisotropy in polymeric microactuators. Kim J; Chung SE; Choi SE; Lee H; Kim J; Kwon S Nat Mater; 2011 Oct; 10(10):747-52. PubMed ID: 21822261 [TBL] [Abstract][Full Text] [Related]
20. Design, fabrication, and calibration of a micro-load cell for micro-resistojet development. Seo D; Ryu Y; Choi J; Lee J Rev Sci Instrum; 2021 Nov; 92(11):115002. PubMed ID: 34852529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]