BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31580062)

  • 1. Ultrasensitive Apurinic/Apyrimidinic Site-Specific Ratio Fluorescent Rotor for Real-Time Highly Selective Evaluation of mtDNA Oxidative Damage in Living Cells.
    Feng B; Wang K; Liu J; Mao G; Cui J; Xuan X; Jiang K; Zhang H
    Anal Chem; 2019 Nov; 91(21):13962-13969. PubMed ID: 31580062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria-Directed Fluorescent Probe for the Detection of Hydrogen Peroxide near Mitochondrial DNA.
    Wen Y; Liu K; Yang H; Liu Y; Chen L; Liu Z; Huang C; Yi T
    Anal Chem; 2015 Oct; 87(20):10579-84. PubMed ID: 26399738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability.
    Kang DM; Shin JI; Kim JB; Lee K; Chung JH; Yang HW; Kim KN; Han YS
    BMC Mol Cell Biol; 2019 Nov; 20(1):54. PubMed ID: 31775627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mtDNA-Specific Ultrasensitive Near-Infrared Fluorescent Probe Enables the Differentiation of Healthy and Apoptotic Cells.
    Wang Y; Niu H; Wang K; Wang G; Liu J; James TD; Zhang H
    Anal Chem; 2022 May; 94(21):7510-7519. PubMed ID: 35588727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Off-On Two-Photon Carbazole-Based Fluorescent Probe: Highly Targeting and Super-Resolution Imaging of mtDNA.
    Gao F; Li L; Fan J; Cao J; Li Y; Chen L; Peng X
    Anal Chem; 2019 Mar; 91(5):3336-3341. PubMed ID: 30724069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses.
    Jun YW; Albarran E; Wilson DL; Ding J; Kool ET
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202111829. PubMed ID: 34851014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis.
    Kanazhevskaya LY; Koval VV; Vorobjev YN; Fedorova OS
    Biochemistry; 2012 Feb; 51(6):1306-21. PubMed ID: 22243137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence probe acted on Site I binding for Human Serum Albumin.
    Xu Y; Zhang M; Li B; Wang W; Wang B; Yang Y; Zhu H
    Talanta; 2018 Aug; 185():568-572. PubMed ID: 29759242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA; Song B; Shadel GS; Doetsch PW
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
    Kanno S; Iwai S; Takao M; Yasui A
    Nucleic Acids Res; 1999 Aug; 27(15):3096-103. PubMed ID: 10454605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a New Fluorescent Oligonucleotide-Based Assay for a Highly Specific Real-Time Detection of Apurinic/Apyrimidinic Site Cleavage by Tyrosyl-DNA Phosphodiesterase 1.
    Lebedeva NA; Anarbaev RO; Kupryushkin MS; Rechkunova NI; Pyshnyi DV; Stetsenko DA; Lavrik OI
    Bioconjug Chem; 2015 Oct; 26(10):2046-53. PubMed ID: 26335988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bcl2 inhibition of mitochondrial DNA repair.
    Xie M; Doetsch PW; Deng X
    BMC Cancer; 2015 Aug; 15():586. PubMed ID: 26268226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymology of mitochondrial base excision repair.
    Bogenhagen DF; Pinz KG; Perez-Jannotti RM
    Prog Nucleic Acid Res Mol Biol; 2001; 68():257-71. PubMed ID: 11554302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of OGG1 Results in a Differential Signature of Oxidized Purine Base Damage in mtDNA Regions.
    Chimienti G; Pesce V; Fracasso F; Russo F; de Souza-Pinto NC; Bohr VA; Lezza AMS
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of apurinic/apyrimidinic lesions in DNA with high-performance liquid chromatography and tandem mass spectrometry.
    Roberts KP; Sobrino JA; Payton J; Mason LB; Turesky RJ
    Chem Res Toxicol; 2006 Feb; 19(2):300-9. PubMed ID: 16485907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive fluorescent ratio imaging probe for the detection of glutathione ultratrace change in mitochondria of cancer cells.
    Zhang H; Wang C; Wang K; Xuan X; Lv Q; Jiang K
    Biosens Bioelectron; 2016 Nov; 85():96-102. PubMed ID: 27156018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining.
    Ashley N; Harris D; Poulton J
    Exp Cell Res; 2005 Feb; 303(2):432-46. PubMed ID: 15652355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Duplex Engineering for Enantioselective Fluorescent Sensor.
    Hu Y; Lin F; Wu T; Zhou Y; Li Q; Shao Y; Xu Z
    Anal Chem; 2017 Feb; 89(4):2181-2185. PubMed ID: 28194940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue.
    Huang S; Wu Y; Zeng F; Chen J; Wu S
    Anal Chim Acta; 2018 Nov; 1031():169-177. PubMed ID: 30119736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of an ultrasensitive BODIPY-derived fluorescent probe for detecting HOCl in live cells.
    Zhu H; Zhang Z; Long S; Du J; Fan J; Peng X
    Nat Protoc; 2018 Oct; 13(10):2348-2361. PubMed ID: 30250290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.