These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31580064)
21. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate. Kim EJ; Baek K J Hazard Mater; 2015 Mar; 284():19-26. PubMed ID: 25463213 [TBL] [Abstract][Full Text] [Related]
22. [Microbial reduction and mobilization of adsorbed arsenate on ferric/aluminum hydroxides]. Zhang XX; Jia YF; Pan RR; Chen L; Wang X; Xu LY Huan Jing Ke Xue; 2009 Mar; 30(3):755-60. PubMed ID: 19432323 [TBL] [Abstract][Full Text] [Related]
23. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Ohtsuka T; Yamaguchi N; Makino T; Sakurai K; Kimura K; Kudo K; Homma E; Dong DT; Amachi S Environ Sci Technol; 2013 Jun; 47(12):6263-71. PubMed ID: 23668621 [TBL] [Abstract][Full Text] [Related]
24. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Cai X; Yin N; Wang P; Du H; Liu X; Cui Y J Hazard Mater; 2020 Nov; 398():122886. PubMed ID: 32512445 [TBL] [Abstract][Full Text] [Related]
25. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. Das S; Liu CC; Jean JS; Lee CC; Yang HJ J Hazard Mater; 2016 Jun; 310():11-9. PubMed ID: 26897570 [TBL] [Abstract][Full Text] [Related]
26. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump. Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072 [TBL] [Abstract][Full Text] [Related]
27. Iron and arsenic release from aquifer solids in response to biostimulation. McLean JE; Dupont RR; Sorensen DL J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439 [TBL] [Abstract][Full Text] [Related]
28. Soil Humic Acid Stimulates Potentially Active Dissimilatory Arsenate-Reducing Bacteria in Flooded Paddy Soil as Revealed by Metagenomic Stable Isotope Probing. Qiao J; Chen M; Zhong S; Tong H; Li F Environ Sci Technol; 2024 Feb; 58(5):2303-2312. PubMed ID: 38263620 [TBL] [Abstract][Full Text] [Related]
29. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways. Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508 [TBL] [Abstract][Full Text] [Related]
30. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Vítková M; Rákosová S; Michálková Z; Komárek M J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579 [TBL] [Abstract][Full Text] [Related]
31. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing Aeromonas strain isolated from paddy soil. Wang XJ; Chen XP; Kappler A; Sun GX; Zhu YG Environ Toxicol Chem; 2009 Nov; 28(11):2255-62. PubMed ID: 19572768 [TBL] [Abstract][Full Text] [Related]
32. Redox transformation of soil minerals and arsenic in arsenic-contaminated soil under cycling redox conditions. Han YS; Park JH; Kim SJ; Jeong HY; Ahn JS J Hazard Mater; 2019 Oct; 378():120745. PubMed ID: 31203129 [TBL] [Abstract][Full Text] [Related]
33. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Weber FA; Hofacker AF; Voegelin A; Kretzschmar R Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741 [TBL] [Abstract][Full Text] [Related]
34. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
35. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Kocar BD; Fendorf S Environ Sci Technol; 2009 Jul; 43(13):4871-7. PubMed ID: 19673278 [TBL] [Abstract][Full Text] [Related]
36. Contrasting effects of dissimilatory iron (III) and arsenic (V) reduction on arsenic retention and transport. Kocar BD; Herbel MJ; Tufano KJ; Fendorf S Environ Sci Technol; 2006 Nov; 40(21):6715-21. PubMed ID: 17144301 [TBL] [Abstract][Full Text] [Related]
37. Environmental Mn(II) enhances the activity of dissimilatory arsenate-respiring prokaryotes from arsenic-contaminated soils. Wu Y; Wu W; Xu Y; Zuo Y; Zeng XC J Environ Sci (China); 2023 Mar; 125():582-592. PubMed ID: 36375940 [TBL] [Abstract][Full Text] [Related]
38. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Qiao JT; Li XM; Li FB J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791 [TBL] [Abstract][Full Text] [Related]
39. Biological effect of phosphate on the dissimilatory arsenate-respiring bacteria-catalyzed reductive mobilization of arsenic from contaminated soils. Shi W; Xu Y; Wu W; Zeng XC Environ Pollut; 2022 Sep; 308():119698. PubMed ID: 35787423 [TBL] [Abstract][Full Text] [Related]
40. Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions. Sun W; Xiao E; Krumins V; Häggblom MM; Dong Y; Pu Z; Li B; Wang Q; Xiao T; Li F Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]