These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31580064)
41. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions. Sun W; Xiao E; Xiao T; Krumins V; Wang Q; Häggblom M; Dong Y; Tang S; Hu M; Li B; Xia B; Liu W Environ Sci Technol; 2017 Aug; 51(16):9165-9175. PubMed ID: 28700218 [TBL] [Abstract][Full Text] [Related]
42. Anaerobic microbe mediated arsenic reduction and redistribution in coastal wetland soil. Luo T; Huang Z; Li X; Zhang Y Sci Total Environ; 2020 Jul; 727():138630. PubMed ID: 32315908 [TBL] [Abstract][Full Text] [Related]
43. The role of soil arsenic fractionation in the bioaccessibility, transformation, and fate of arsenic in the presence of human gut microbiota. Yin N; Li Y; Cai X; Du H; Wang P; Han Z; Sun G; Cui Y J Hazard Mater; 2021 Jan; 401():123366. PubMed ID: 32659581 [TBL] [Abstract][Full Text] [Related]
44. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents. Kim EJ; Lee JC; Baek K J Hazard Mater; 2015; 283():454-61. PubMed ID: 25464283 [TBL] [Abstract][Full Text] [Related]
45. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Liu X; Fu JW; Da Silva E; Shi XX; Cao Y; Rathinasabapathi B; Chen Y; Ma LQ Environ Pollut; 2017 Apr; 223():230-237. PubMed ID: 28108165 [TBL] [Abstract][Full Text] [Related]
46. Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: Enhanced mobility of arsenic. Kim HB; Kim JG; Choi JH; Kwon EE; Baek K Sci Total Environ; 2019 Nov; 689():1037-1043. PubMed ID: 31466144 [TBL] [Abstract][Full Text] [Related]
47. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Huang H; Jia Y; Sun GX; Zhu YG Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880 [TBL] [Abstract][Full Text] [Related]
48. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601 [TBL] [Abstract][Full Text] [Related]
49. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Niggemyer A; Spring S; Stackebrandt E; Rosenzweig RF Appl Environ Microbiol; 2001 Dec; 67(12):5568-80. PubMed ID: 11722908 [TBL] [Abstract][Full Text] [Related]
50. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864 [TBL] [Abstract][Full Text] [Related]
51. Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil. Kumpiene J; Ragnvaldsson D; Lövgren L; Tesfalidet S; Gustavsson B; Lättström A; Leffler P; Maurice C Chemosphere; 2009 Jan; 74(2):206-15. PubMed ID: 18990425 [TBL] [Abstract][Full Text] [Related]
52. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. Uhrynowski W; Debiec K; Sklodowska A; Drewniak L Sci Total Environ; 2017 Nov; 598():680-689. PubMed ID: 28454040 [TBL] [Abstract][Full Text] [Related]
53. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
54. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions. Wang S; He XY; Pan R; Xu L; Wang X; Jia Y Environ Sci Pollut Res Int; 2016 Apr; 23(8):7267-77. PubMed ID: 26676545 [TBL] [Abstract][Full Text] [Related]
55. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. Xiao E; Krumins V; Xiao T; Dong Y; Tang S; Ning Z; Huang Z; Sun W Environ Pollut; 2017 Feb; 221():244-255. PubMed ID: 27979681 [TBL] [Abstract][Full Text] [Related]
56. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols. Zhang Y; O'Loughlin EJ; Park SY; Kwon MJ Sci Total Environ; 2023 Dec; 905():166993. PubMed ID: 37717756 [TBL] [Abstract][Full Text] [Related]
57. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils. Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583 [TBL] [Abstract][Full Text] [Related]
58. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. Wu Q; Du J; Zhuang G; Jing C J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693 [TBL] [Abstract][Full Text] [Related]
59. Arsenic and chromium partitioning in a podzolic soil contaminated by chromated copper arsenate. Hopp L; Nico PS; Marcus MA; Peiffer S Environ Sci Technol; 2008 Sep; 42(17):6481-6. PubMed ID: 18800518 [TBL] [Abstract][Full Text] [Related]
60. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]