These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31580078)

  • 1. Rotamer Jumps, Proton Exchange, and Amine Inversion Dynamics of Dimethylated Lysine Residues in Proteins Resolved by pH-Dependent
    Weininger U; Modig K; Ishida H; Vogel HJ; Akke M
    J Phys Chem B; 2019 Nov; 123(46):9742-9750. PubMed ID: 31580078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine inversion in proteins. A 13C-NMR study of proton exchange and nitrogen inversion rates in N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine,N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine methyl ester, and reductively methylated concanavalin A.
    Goux WJ; Teherani J; Sherry AD
    Biophys Chem; 1984 Jun; 19(4):363-73. PubMed ID: 6430360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.
    Hass MA; Yilmaz A; Christensen HE; Led JJ
    J Biomol NMR; 2009 Aug; 44(4):225-33. PubMed ID: 19533375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes.
    Hansen AL; Lundström P; Velyvis A; Kay LE
    J Am Chem Soc; 2012 Feb; 134(6):3178-89. PubMed ID: 22300166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins.
    Abraham SJ; Kobayashi T; Solaro RJ; Gaponenko V
    J Biomol NMR; 2009 Apr; 43(4):239-46. PubMed ID: 19280122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurement of exchange dynamics in proteins via (13)C relaxation dispersion of (13)CHD2-labeled samples.
    Rennella E; Schuetz AK; Kay LE
    J Biomol NMR; 2016 Jun; 65(2):59-64. PubMed ID: 27251650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational exchange of aromatic side chains by
    Raum HN; Dreydoppel M; Weininger U
    J Biomol NMR; 2018 Oct; 72(1-2):105-114. PubMed ID: 30229369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Leu side-chain conformations in excited protein states by NMR relaxation dispersion.
    Hansen DF; Neudecker P; Vallurupalli P; Mulder FA; Kay LE
    J Am Chem Soc; 2010 Jan; 132(1):42-3. PubMed ID: 20000605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of lysine side-chain amino groups in a protein studied by heteronuclear 1H−15N NMR spectroscopy.
    Esadze A; Li DW; Wang T; Brüschweiler R; Iwahara J
    J Am Chem Soc; 2011 Feb; 133(4):909-19. PubMed ID: 21186799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-selective
    Raum HN; Schörghuber J; Dreydoppel M; Lichtenecker RJ; Weininger U
    J Biomol NMR; 2019 Nov; 73(10-11):633-639. PubMed ID: 31506857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methyl-TROSY based
    Tugarinov V; Baber JL; Clore GM
    J Biomol NMR; 2023 Jun; 77(3):83-91. PubMed ID: 37095392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.
    Chao FA; Byrd RA
    J Magn Reson; 2017 Apr; 277():8-14. PubMed ID: 28189995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific 12CβD(2)12CγD(2)S13CεHD(2) isotopomer labeling of methionine to characterize protein dynamics by 1H and 13C NMR relaxation dispersion.
    Weininger U; Liu Z; McIntyre DD; Vogel HJ; Akke M
    J Am Chem Soc; 2012 Nov; 134(45):18562-5. PubMed ID: 23106551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin.
    André I; Linse S; Mulder FA
    J Am Chem Soc; 2007 Dec; 129(51):15805-13. PubMed ID: 18044888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence for deprotonation of a lysine side chain buried in the hydrophobic core of a protein.
    Takayama Y; Castañeda CA; Chimenti M; García-Moreno B; Iwahara J
    J Am Chem Soc; 2008 May; 130(21):6714-5. PubMed ID: 18454523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multiple-Quantum Spectroscopy.
    Yuwen T; Vallurupalli P; Kay LE
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11490-4. PubMed ID: 27527986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the signs of the methyl
    Gopalan AB; Vallurupalli P
    J Biomol NMR; 2018 Mar; 70(3):187-202. PubMed ID: 29564579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
    Vallurupalli P; Hansen DF; Lundström P; Kay LE
    J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.