These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31580078)

  • 21. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.
    Wallerstein J; Weininger U; Khan MA; Linse S; Akke M
    J Am Chem Soc; 2015 Mar; 137(8):3093-101. PubMed ID: 25665463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments.
    Myint W; Ishima R
    J Biomol NMR; 2009 Sep; 45(1-2):207-16. PubMed ID: 19618276
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Dreydoppel M; Lichtenecker RJ; Akke M; Weininger U
    J Biomol NMR; 2021 Dec; 75(10-12):383-392. PubMed ID: 34510298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
    Huque ME; Vogel HJ
    J Protein Chem; 1993 Dec; 12(6):695-707. PubMed ID: 8136020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected ¹³C CPMG relaxation dispersion.
    Weininger U; Respondek M; Akke M
    J Biomol NMR; 2012 Sep; 54(1):9-14. PubMed ID: 22833056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A "Steady-State" Relaxation Dispersion Nuclear Magnetic Resonance Experiment for Studies of Chemical Exchange in Degenerate
    Tugarinov V; Okuno Y; Torricella F; Karamanos TK; Clore GM
    J Phys Chem Lett; 2022 Dec; 13(48):11271-11279. PubMed ID: 36449372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR.
    Vallurupalli P; Bouvignies G; Kay LE
    J Phys Chem B; 2011 Dec; 115(49):14891-900. PubMed ID: 22077866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange.
    Koss H; Rance M; Palmer AG
    J Magn Reson; 2020 Dec; 321():106846. PubMed ID: 33128917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.
    Gao G; DeRose EF; Kirby TW; London RE
    Biochemistry; 2006 Feb; 45(6):1785-94. PubMed ID: 16460025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of specific protein association by 15N CPMG relaxation dispersion NMR: the GB1(A34F) monomer-dimer equilibrium.
    Jee J; Ishima R; Gronenborn AM
    J Phys Chem B; 2008 May; 112(19):6008-12. PubMed ID: 18004837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protonation and ion exchange equilibria of weak base anion-exchange resins.
    Miyazaki Y; Nakai M
    Talanta; 2011 Sep; 85(4):1798-804. PubMed ID: 21872022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
    Orekhov VYu ; Pervushin KV; Arseniev AS
    Eur J Biochem; 1994 Feb; 219(3):887-96. PubMed ID: 8112340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of salt bridges to lysines in the protein G B1 domain.
    Tomlinson JH; Ullah S; Hansen PE; Williamson MP
    J Am Chem Soc; 2009 Apr; 131(13):4674-84. PubMed ID: 19281232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of pH on protein association: modification of the proton-linkage model and experimental verification of the modified model in the case of cytochrome c and plastocyanin.
    Crnogorac MM; Ullmann GM; Kostić NM
    J Am Chem Soc; 2001 Nov; 123(44):10789-98. PubMed ID: 11686679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion.
    Chao FA; Li Y; Zhang Y; Byrd RA
    J Am Chem Soc; 2019 Jul; 141(30):11881-11891. PubMed ID: 31293161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of lysine ¹³C-methylation NMR for protein-protein interaction studies.
    Hattori Y; Furuita K; Ohki I; Ikegami T; Fukada H; Shirakawa M; Fujiwara T; Kojima C
    J Biomol NMR; 2013 Jan; 55(1):19-31. PubMed ID: 23224986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic Approach to Find the Global Minimum of Relaxation Dispersion Data for Protein-Induced B-Z Transition of DNA.
    Oh KI; Lee AR; Choi SR; Go Y; Ryu KS; Kim EH; Lee JH
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-probe relaxation dispersion measurements increase sensitivity to protein dynamics.
    Fenwick RB; Oyen D; Wright PE
    Phys Chem Chem Phys; 2016 Feb; 18(8):5789-98. PubMed ID: 26426424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.