These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31580687)

  • 1. Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings.
    Gao L; Wang J; Guan S; Du M; Wu K; Xu K; Zou L; Tian H; Fang Y
    Nano Lett; 2019 Nov; 19(11):8032-8039. PubMed ID: 31580687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An implantable microactuated intrafascicular electrode for peripheral nerves.
    Bossi S; Kammer S; Dörge T; Menciassi A; Hoffmann KP; Micera S
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2701-6. PubMed ID: 19758853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.
    Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA
    Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays.
    Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM
    Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape memory alloy microactuation of tf-lIFes: preliminary results.
    Bossi S; Menciassi A; Koch KP; Hoffmann KP; Yoshida K; Dario P; Micera S
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1115-20. PubMed ID: 17554830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastocapillary self-assembled neurotassels for stable neural activity recordings.
    Guan S; Wang J; Gu X; Zhao Y; Hou R; Fan H; Zou L; Gao L; Du M; Li C; Fang Y
    Sci Adv; 2019 Mar; 5(3):eaav2842. PubMed ID: 30944856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes.
    Liu X; McCreery DB; Carter RR; Bullara LA; Yuen TG; Agnew WF
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):315-26. PubMed ID: 10498377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion.
    Arafat MA; Rubin LN; Jefferys JGR; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1724-1731. PubMed ID: 31380762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEMS-Actuated Carbon Fiber Microelectrode for Neural Recording.
    Zoll RS; Schindler CB; Massey TL; Drew DS; Maharbiz MM; Pister KSJ
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):234-239. PubMed ID: 30892226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.