These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 31580969)
1. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method. Żołek N; Rix H; Botwicz M Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved subtraction method for measuring optical properties of turbid media. Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations. Kamran F; Andersen PE Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382 [TBL] [Abstract][Full Text] [Related]
4. A comparison between plausible models in layered turbid media with geometrical variations applying a Bayesian selection criterion. Vera DA; Baez GR; García HA; Iriarte DI; Pomarico JA Biomed Phys Eng Express; 2020 Sep; 6(5):055020. PubMed ID: 33444251 [TBL] [Abstract][Full Text] [Related]
6. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. Liu Q; Ramanujam N J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287 [TBL] [Abstract][Full Text] [Related]
7. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance. Sato C; Shimada M; Tanikawa Y; Hoshi Y J Biomed Opt; 2013 Sep; 18(9):097005. PubMed ID: 24057194 [TBL] [Abstract][Full Text] [Related]
8. Light propagation in a turbid medium with insonified microbubbles. Leung TS; Honeysett JE; Stride E; Deng J J Biomed Opt; 2013 Jan; 18(1):15002. PubMed ID: 23292610 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media. Liebert A; Wabnitz H; Zołek N; Macdonald R Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557 [TBL] [Abstract][Full Text] [Related]
10. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport. Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394 [TBL] [Abstract][Full Text] [Related]
11. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media. Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904 [TBL] [Abstract][Full Text] [Related]
12. Propagation of polarized light in birefringent turbid media: a Monte Carlo study. Wang X; Wang LV J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276 [TBL] [Abstract][Full Text] [Related]
13. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties. Ma G; Delorme JF; Gallant P; Boas DA Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611 [TBL] [Abstract][Full Text] [Related]
14. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations. Yuan Y; Yu L; Doğan Z; Fang Q J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265 [TBL] [Abstract][Full Text] [Related]
15. Scattering noise estimation of range-gated imaging system in turbid condition. Tan C; Seet G; Sluzek A; Wang X; Yuen CT; Fam CY; Wong HY Opt Express; 2010 Sep; 18(20):21147-54. PubMed ID: 20941011 [TBL] [Abstract][Full Text] [Related]
16. Determination of the optical properties of turbid media from a single Monte Carlo simulation. Kienle A; Patterson MS Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392 [TBL] [Abstract][Full Text] [Related]
17. Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths. Fawzi YS; Youssef AB; el-Batanony MH; Kadah YM Appl Opt; 2003 Nov; 42(31):6398-411. PubMed ID: 14649284 [TBL] [Abstract][Full Text] [Related]
19. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues. Wang RK Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587 [TBL] [Abstract][Full Text] [Related]
20. Extraction of optical properties and prediction of light distribution in rat brain tissue. Azimipour M; Baumgartner R; Liu Y; Jacques SL; Eliceiri K; Pashaie R J Biomed Opt; 2014; 19(7):75001. PubMed ID: 24996660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]