These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 31580990)
1. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Lv L; Qu J; Yu Z; Chen D; Zhou C; Hong P; Sun S; Li C Environ Pollut; 2019 Dec; 255(Pt 2):113283. PubMed ID: 31580990 [TBL] [Abstract][Full Text] [Related]
2. Nile red staining in microplastic analysis-proposal for a reliable and fast identification approach for large microplastics. Hengstmann E; Fischer EK Environ Monit Assess; 2019 Sep; 191(10):612. PubMed ID: 31489505 [TBL] [Abstract][Full Text] [Related]
3. An optimized density-based approach for extracting microplastics from soil and sediment samples. Han X; Lu X; Vogt RD Environ Pollut; 2019 Nov; 254(Pt A):113009. PubMed ID: 31419661 [TBL] [Abstract][Full Text] [Related]
4. Identification and quantification of microplastics using Nile Red staining. Shim WJ; Song YK; Hong SH; Jang M Mar Pollut Bull; 2016 Dec; 113(1-2):469-476. PubMed ID: 28340965 [TBL] [Abstract][Full Text] [Related]
5. A new analytical approach for monitoring microplastics in marine sediments. Nuelle MT; Dekiff JH; Remy D; Fries E Environ Pollut; 2014 Jan; 184():161-9. PubMed ID: 24051349 [TBL] [Abstract][Full Text] [Related]
6. Material-Specific Determination Based on Microscopic Observation of Single Microplastic Particles Stained with Fluorescent Dyes. Aoki H Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591080 [TBL] [Abstract][Full Text] [Related]
7. Contamination of Indian sea salts with microplastics and a potential prevention strategy. Seth CK; Shriwastav A Environ Sci Pollut Res Int; 2018 Oct; 25(30):30122-30131. PubMed ID: 30145764 [TBL] [Abstract][Full Text] [Related]
8. Nile Red staining for detecting microplastics in biota: Preliminary evidence. Nalbone L; Panebianco A; Giarratana F; Russell M Mar Pollut Bull; 2021 Nov; 172():112888. PubMed ID: 34454386 [TBL] [Abstract][Full Text] [Related]
9. Microplastic pollution on the Persian Gulf shoreline: A case study of Bandar Abbas city, Hormozgan Province, Iran. Nabizadeh R; Sajadi M; Rastkari N; Yaghmaeian K Mar Pollut Bull; 2019 Aug; 145():536-546. PubMed ID: 31590821 [TBL] [Abstract][Full Text] [Related]
10. Innovative application of Nile Red (NR)-based dye for direct detection of micro and nanoplastics (MNPs) in diverse aquatic environments. Peinador RI; H P PT; Calvo JI Chemosphere; 2024 Aug; 362():142609. PubMed ID: 38878980 [TBL] [Abstract][Full Text] [Related]
11. The quantification of the airborne plastic particles of 0.43-11 μm: Procedure development and application to atmospheric environment. Morioka T; Tanaka S; Kohama-Inoue A; Watanabe A Chemosphere; 2024 Mar; 351():141131. PubMed ID: 38190942 [TBL] [Abstract][Full Text] [Related]
12. Counterstaining to Separate Nile Red-Stained Microplastic Particles from Terrestrial Invertebrate Biomass. Maxwell S H; Melinda K F; Matthew G Environ Sci Technol; 2020 May; 54(9):5580-5588. PubMed ID: 32298090 [TBL] [Abstract][Full Text] [Related]
13. Prevalence of microplastics in the marine waters of Qatar. Castillo AB; Al-Maslamani I; Obbard JP Mar Pollut Bull; 2016 Oct; 111(1-2):260-267. PubMed ID: 27389452 [TBL] [Abstract][Full Text] [Related]
14. Microplastic pollution in the surface waters of the Bohai Sea, China. Zhang W; Zhang S; Wang J; Wang Y; Mu J; Wang P; Lin X; Ma D Environ Pollut; 2017 Dec; 231(Pt 1):541-548. PubMed ID: 28843202 [TBL] [Abstract][Full Text] [Related]
15. Occurrence and risk assessment of microplastics from various toothpastes. Ustabasi GS; Baysal A Environ Monit Assess; 2019 Jun; 191(7):438. PubMed ID: 31203457 [TBL] [Abstract][Full Text] [Related]
16. Microwave-Assisted Extraction for Quantification of Microplastics Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Hermabessiere L; Rochman CM Environ Toxicol Chem; 2021 Oct; 40(10):2733-2741. PubMed ID: 34314525 [TBL] [Abstract][Full Text] [Related]
17. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Erni-Cassola G; Gibson MI; Thompson RC; Christie-Oleza JA Environ Sci Technol; 2017 Dec; 51(23):13641-13648. PubMed ID: 29112813 [TBL] [Abstract][Full Text] [Related]
18. Nanoplastic occurrence in a soil amended with plastic debris. Wahl A; Le Juge C; Davranche M; El Hadri H; Grassl B; Reynaud S; Gigault J Chemosphere; 2021 Jan; 262():127784. PubMed ID: 32777612 [TBL] [Abstract][Full Text] [Related]
19. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Prata JC; Paço A; Reis V; da Costa JP; Fernandes AJS; da Costa FM; Duarte AC; Rocha-Santos T Food Chem; 2020 Nov; 331():127323. PubMed ID: 32554310 [TBL] [Abstract][Full Text] [Related]
20. Identification and Quantification of Microplastics in the Marine Environment Using the Laser Direct Infrared (LDIR) Technique. Ourgaud M; Phuong NN; Papillon L; Panagiotopoulos C; Galgani F; Schmidt N; Fauvelle V; Brach-Papa C; Sempéré R Environ Sci Technol; 2022 Jul; 56(14):9999-10009. PubMed ID: 35749650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]