These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31581029)
1. A heating value estimation of refuse derived fuel using the genetic programming model. Özkan K; Işık Ş; Günkaya Z; Özkan A; Banar M Waste Manag; 2019 Dec; 100():327-335. PubMed ID: 31581029 [TBL] [Abstract][Full Text] [Related]
2. Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Boumanchar I; Chhiti Y; M'hamdi Alaoui FE; Sahibed-Dine A; Bentiss F; Jama C; Bensitel M Waste Manag Res; 2019 Jun; 37(6):578-589. PubMed ID: 30565506 [TBL] [Abstract][Full Text] [Related]
3. Characterization of refuse derived fuel samples prepared from municipal solid waste in Vellore, India. Thawani B; Mahanty B; Behera SK Environ Technol; 2022 May; 43(12):1843-1852. PubMed ID: 33323041 [TBL] [Abstract][Full Text] [Related]
4. Higher heating value estimation of wastes and fuels from ultimate and proximate analysis by using artificial neural networks. Insel MA; Yucel O; Sadikoglu H Waste Manag; 2024 Jul; 185():33-42. PubMed ID: 38820782 [TBL] [Abstract][Full Text] [Related]
5. Thermogravimetric analysis as express tool for quality assessment of refuse derived fuels used for pyro-gasification. Porshnov D; Ozols V; Klavins M Environ Technol; 2020 Jan; 41(1):29-35. PubMed ID: 30794045 [TBL] [Abstract][Full Text] [Related]
6. Refuse-derived fuel potential production for co-combustion in the cement industry in Algeria. Sakri A; Aouabed A; Nassour A; Nelles M Waste Manag Res; 2021 Sep; 39(9):1174-1184. PubMed ID: 33407010 [TBL] [Abstract][Full Text] [Related]
7. Torrefaction and carbonization of refuse derived fuel: Char characterization and evaluation of gaseous and liquid emissions. Nobre C; Alves O; Longo A; Vilarinho C; Gonçalves M Bioresour Technol; 2019 Aug; 285():121325. PubMed ID: 30991186 [TBL] [Abstract][Full Text] [Related]
8. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the proximate analysis parameters of refuse-derived fuel based on deep learning approach. Günkaya Z; Özkan M; Özkan K; Bekgöz BO; Yorulmaz Ö; Özkan A; Banar M Environ Sci Pollut Res Int; 2023 Feb; 30(7):17327-17341. PubMed ID: 36195811 [TBL] [Abstract][Full Text] [Related]
10. The RDF/SRF torrefaction: An effect of temperature on characterization of the product - Carbonized Refuse Derived Fuel. Białowiec A; Pulka J; Stępień P; Manczarski P; Gołaszewski J Waste Manag; 2017 Dec; 70():91-100. PubMed ID: 28951151 [TBL] [Abstract][Full Text] [Related]
11. Comparison of fuel value and combustion characteristics of two different RDF samples. Sever Akdağ A; Atımtay A; Sanin FD Waste Manag; 2016 Jan; 47(Pt B):217-24. PubMed ID: 26360232 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the self-heating and spontaneous ignition of refuse-derived fuel (RDF) during storage. Yasuhara A; Amano Y; Shibamoto T Waste Manag; 2010 Jul; 30(7):1161-4. PubMed ID: 19963363 [TBL] [Abstract][Full Text] [Related]
13. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications. Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051 [TBL] [Abstract][Full Text] [Related]
14. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed. Krüger B; Mrotzek A; Wirtz S Waste Manag; 2014 Feb; 34(2):390-401. PubMed ID: 24252370 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the potential use of major refuse-derived fuels in Jordan as supplementary fuel. Alsheyab MA; Schingnitz D; Al-Shawabkeh AF; Kusch S J Air Waste Manag Assoc; 2013 Aug; 63(8):902-8. PubMed ID: 24010370 [TBL] [Abstract][Full Text] [Related]
16. Effect of microwave chlorine depleted pyrolyzate on the combustion characteristics of refuse derived fuel derived from package waste. Liu Z; Wang HQ; Zhou YY; Liu JW; Zhang XD; Hu GW Waste Manag; 2018 Dec; 82():1-8. PubMed ID: 30509570 [TBL] [Abstract][Full Text] [Related]
17. Design of an industrial solid waste processing line to produce refuse-derived fuel. Infiesta LR; Ferreira CRN; Trovó AG; Borges VL; Carvalho SR J Environ Manage; 2019 Apr; 236():715-719. PubMed ID: 30772728 [TBL] [Abstract][Full Text] [Related]
18. Implementation of an early warning system with hyperspectral imaging combined with deep learning model for chlorine in refuse derived fuels. Özkan M; Özkan K; Bekgöz BO; Yorulmaz Ö; Günkaya Z; Özkan A; Banar M Waste Manag; 2022 Apr; 142():111-119. PubMed ID: 35202998 [TBL] [Abstract][Full Text] [Related]
19. Unlocking integrated waste biorefinery approach by predicting calorific value of waste biomass. Waqas M; Nizami AS; Aburiazaiza AS; Jabeen F; Arikan OA; Anees A; Hussain F; Javed MH; Rehan M Environ Res; 2023 Nov; 237(Pt 1):116943. PubMed ID: 37619627 [TBL] [Abstract][Full Text] [Related]
20. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel. Robinson T; Bronson B; Gogolek P; Mehrani P Waste Manag; 2016 Feb; 48():265-274. PubMed ID: 26611398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]