These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31581081)

  • 1. Ultralow Acoustic Loss Micromachined Butterfly Lamb Wave Resonators on AlN Plates.
    Zou J; Gao A; Pisano AP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):671-674. PubMed ID: 31581081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Quality-Factor and Spectrum-Clean AlN Lamb-Wave Resonators with Optimized Lateral Reflection Boundary Conditions and Transducer Design.
    Sun H; Lv S; Zhang A; Song C; Sun X; Tan F; Liang L; Zhu Y; Zhao J
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromachined thin film plate acoustic resonators utilizing the lowest order symmetric lamb wave mode.
    Yantchev V; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jan; 54(1):87-95. PubMed ID: 17225803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H-Shaped Radial Phononic Crystal for High-Quality Factor on Lamb Wave Resonators.
    He W; Li L; Tong Z; Liu H; Yang Q; Gao T
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromachined thin film plate acoustic wave resonators (FPAR): Part II.
    Yantchev V; Arapan L; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2701-10. PubMed ID: 20040407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on Quasi-Lamb Wave Modes in AlN-on-Si MEMS Resonators.
    Tu C; Qiao L; Li L; Chen Y; Zhang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1252-1260. PubMed ID: 37028377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anchor Loss Reduction of Lamb Wave Resonator by Pillar-Based Phononic Crystal.
    Tong Y; Han T
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33430263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency SAW filters based on diamond films.
    Fujii S; Jian C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2758-64. PubMed ID: 23221225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling-of-modes analysis of thin film plate acoustic wave resonators utilizing the S0 Lamb mode.
    Yantchev V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):801-7. PubMed ID: 20378442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators.
    Lin CM; Chen YY; Felmetsger VV; Senesky DG; Pisano AP
    Adv Mater; 2012 May; 24(20):2722-7. PubMed ID: 22495881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance SAW Resonator with Spurious Mode Suppression Using Hexagonal Weighted Electrode Structure.
    Liu Y; Wang H; Zhang F; Gou L; Zhang S; Cao G; Zhang P
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided lamb wave electroacoustic devices on micromachined AlN/Al plates.
    Di Pietrantonio F; Benetti M; Cannatà D; Beccherelli R; Verona E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1175-82. PubMed ID: 20442029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly mass-sensitive thin film plate acoustic resonators (FPAR).
    Arapan L; Alexieva G; Avramov ID; Radeva E; Strashilov V; Katardjiev I; Yantchev V
    Sensors (Basel); 2011; 11(7):6942-53. PubMed ID: 22163994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Strategy for Extracting Full Material Coefficients of AlN Thin Film Based on Resonance Method.
    Wang C; Yang Y; Qin L; Ma S; Jin Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Frequency and Spectrum-Clean Shear-Horizontal Acoustic Wave Resonators with AlN Overlay.
    Wu Z; Wu S; Bao F; Zou J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures.
    Shu L; Peng B; Li C; Gong D; Yang Z; Liu X; Zhang W
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide Acoustic Bandgap Solid Disk-Shaped Phononic Crystal Anchoring Boundaries for Enhancing Quality Factor in AlN-on-Si MEMS Resonators.
    Siddiqi MWU; Lee JE
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Array of piezoelectric lateral electric field excited resonators.
    Borodina IA; Zaitsev BD; Teplykh AA; Shikhabudinov AM; Kuznetsova IE
    Ultrasonics; 2015 Sep; 62():200-2. PubMed ID: 26060097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-compensated aluminum nitride lamb wave resonators.
    Lin CM; Yen TT; Lai YJ; Felmetsger VV; Hopcroft MA; Kuypers JH; Pisano AP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):524-32. PubMed ID: 20211766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic wave propagation along AlN on Bi
    Anisimkin VI; Verona E; Kuznetsova AS
    Ultrasonics; 2019 Apr; 94():314-318. PubMed ID: 30170739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.