These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31581082)

  • 61. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N; Üstüner KF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):852-61. PubMed ID: 25965679
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.
    Chen Y; Lou Y; Yen J
    Ultrason Imaging; 2017 Jul; 39(4):207-223. PubMed ID: 28627331
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ultrafast Ultrasound Imaging Using Combined Transmissions With Cross-Coherence-Based Reconstruction.
    Zhang Y; Guo Y; Lee WN
    IEEE Trans Med Imaging; 2018 Feb; 37(2):337-348. PubMed ID: 28792890
    [TBL] [Abstract][Full Text] [Related]  

  • 64. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound.
    Khan S; Huh J; Ye JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1558-1572. PubMed ID: 32149628
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An approach to multibeam covariance matrices for adaptive beamforming in ultrasonography.
    Jensen AC; Austeng A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1139-48. PubMed ID: 22711409
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A submatrix spatial coherence approach to minimum variance beamforming combined with sign coherence factor for coherent plane wave compounding.
    Yan X; Wang Y
    Technol Health Care; 2022; 30(S1):11-25. PubMed ID: 35124580
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images.
    Lediju Bell MA; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1265-76. PubMed ID: 26168173
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multi-line transmission in medical imaging using the second-harmonic signal.
    Prieur F; Dénarié B; Austeng A; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2682-92. PubMed ID: 24297034
    [TBL] [Abstract][Full Text] [Related]  

  • 70. CNN-Based Ultrasound Image Reconstruction for Ultrafast Displacement Tracking.
    Perdios D; Vonlanthen M; Martinez F; Arditi M; Thiran JP
    IEEE Trans Med Imaging; 2021 Mar; 40(3):1078-1089. PubMed ID: 33351759
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison Between Multiline Transmission and Diverging Wave Imaging: Assessment of Image Quality and Motion Estimation Accuracy.
    Badescu E; Garcia D; Joos P; Bernard A; Augeul L; Ferrera R; Viallon M; Petrusca L; Friboulet D; Liebgott H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Oct; 66(10):1560-1572. PubMed ID: 31251183
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Wide-Angle Tissue Doppler Imaging at High Frame Rate Using Multi-Line Transmit Beamforming: An Experimental Validation In Vivo.
    Tong L; Ramalli A; Tortoli P; Fradella G; Caciolli S; Luo J; D'hooge J
    IEEE Trans Med Imaging; 2016 Feb; 35(2):521-8. PubMed ID: 26394417
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recovery of the Complete Data Set From Focused Transmit Beams.
    Bottenus N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):30-38. PubMed ID: 29283345
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study.
    Tong L; Gao H; Choi HF; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1654-63. PubMed ID: 22899113
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multi-transmit beam forming for fast cardiac imaging--a simulation study.
    Ling Tong ; Hang Gao ; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1719-31. PubMed ID: 25004542
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimum beamforming for sidelobe reduction in ultrasound imaging.
    Sakhaei SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):799-805. PubMed ID: 22547290
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Apodized adaptive beamformer.
    Hasegawa H
    J Med Ultrason (2001); 2017 Apr; 44(2):155-165. PubMed ID: 28084559
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Adaptation of Range-Doppler Algorithm for Efficient Beamforming of Monostatic and Multistatic Ultrasound Signals.
    Jakovljevic M; Michaelides R; Biondi E; Hyun D; Zebker HA; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3165-3178. PubMed ID: 36094975
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study.
    Santos P; Tong L; Ortega A; Løvstakken L; Samset E; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1320-30. PubMed ID: 26168178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.