These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31581091)

  • 1. A Fast and Furious Bayesian Network and Its Application of Identifying Colon Cancer to Liver Metastasis Gene Regulatory Networks.
    Liu E; Li J; Kinnebrew GH; Zhang P; Zhang Y; Cheng L; Li L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1325-1335. PubMed ID: 31581091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks.
    Bernaola N; Michiels M; LarraƱaga P; Bielza C
    PLoS Comput Biol; 2023 Dec; 19(12):e1011443. PubMed ID: 38039337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.
    Hase T; Ghosh S; Yamanaka R; Kitano H
    PLoS Comput Biol; 2013; 9(11):e1003361. PubMed ID: 24278007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of gene networks using prior knowledge.
    Ghanbari M; Lasserre J; Vingron M
    BMC Syst Biol; 2015 Nov; 9():84. PubMed ID: 26589494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network.
    Chen H; Maduranga DAK; Mundra PA; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data.
    Ajmal HB; Madden MG
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2794-2805. PubMed ID: 34181549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network.
    Lo LY; Wong ML; Lee KH; Leung KS
    BMC Bioinformatics; 2015 Nov; 16():395. PubMed ID: 26608050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid Bayesian network learning method for constructing gene networks.
    Wang M; Chen Z; Cloutier S
    Comput Biol Chem; 2007 Oct; 31(5-6):361-72. PubMed ID: 17889617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.
    Iglesias-Martinez LF; Kolch W; Santra T
    Sci Rep; 2016 Nov; 6():37140. PubMed ID: 27876826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.
    Zheng M; Wu JN; Huang YX; Liu GX; Zhou Y; Zhou CG
    PLoS One; 2012; 7(12):e51141. PubMed ID: 23226565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation.
    Jiang H; Wang Y; Yin C; Pan H; Chen L; Feng K; Chang Y; Sun H
    Comput Biol Med; 2024 Aug; 178():108690. PubMed ID: 38879931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning complex dependency structure of gene regulatory networks from high dimensional microarray data with Gaussian Bayesian networks.
    Graafland CE; GutiƩrrez JM
    Sci Rep; 2022 Nov; 12(1):18704. PubMed ID: 36333425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.