These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31581097)

  • 1. A 2.6 μW Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 μW LED Power for Continuous Health Monitoring.
    Caizzone A; Boukhayma A; Enz C
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1243-1253. PubMed ID: 31581097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop.
    Lee J; Jang DH; Park S; Cho S
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO
    Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition.
    Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 280 μW, 108 dB DR PPG-Readout IC With Reconfigurable, 2nd-Order, Incremental ΔΣM Front-End for Direct Light-to-Digital Conversion.
    Marefat F; Erfani R; Kilgore KL; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1183-1194. PubMed ID: 33186120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique.
    Kim J; Lee T; Kim J; Ko H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6441-4. PubMed ID: 26737767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications.
    Lin Q; Xu J; Song S; Breeschoten A; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):800-810. PubMed ID: 32746343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.
    Kim J; Kim J; Ko H
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling.
    Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-power high-sensitivity analog front-end for PPG sensor.
    Binghui Lin ; Atef M; Guoxing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():861-864. PubMed ID: 29060008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sparse Sampling Sensor Front-End IC for Low Power Continuous SpO
    Alamouti SF; Jan J; Yalcin C; Ting J; Arias AC; Muller R
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):997-1007. PubMed ID: 36417724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart photoplethysmographic sensor for pulse wave registration at different vascular depths.
    Leier M; Pilt K; Karai D; Jervan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1849-52. PubMed ID: 26736641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Real-Time Vital-Sign Monitoring in the Physical Domain on a Mixed-Signal Reconfigurable Platform.
    Shah S; Toreyin H; Gungor CB; Hasler J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1690-1699. PubMed ID: 31670678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities.
    Zhu L; Du D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography.
    Hina A; Saadeh W
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):504-515. PubMed ID: 32149655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wireless Multimodal Physiological Monitoring ASIC for Animal Health Monitoring Injectable Devices.
    Zhao L; Stephany RG; Han Y; Ahmmed P; Huang TP; Bozkurt A; Jia Y
    IEEE Trans Biomed Circuits Syst; 2024 Oct; 18(5):1037-1049. PubMed ID: 38437072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals.
    Chung H; Ko H; Lee H; Lee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.