BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31581136)

  • 1. Stimuli-responsive photoluminescence soft hybrid microgel particles: synthesis and characterizations.
    Singh RK; Bhol P; Mandal D; Mohanty PS
    J Phys Condens Matter; 2020 Jan; 32(4):044001. PubMed ID: 31581136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity.
    Bhol P; Mohanty PS
    J Phys Condens Matter; 2020 Feb; 33(8):084002. PubMed ID: 33017813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-, pH-, and light-responsive poly(N-isopropylacrylamide-co-methacrylic acid)--Au hybrid microgels prepared by the in situ reduction method based on Au-thiol chemistry.
    Shi S; Wang Q; Wang T; Ren S; Gao Y; Wang N
    J Phys Chem B; 2014 Jun; 118(25):7177-86. PubMed ID: 24897339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of microgels sensitive toward copper II ions.
    Muratalin M; Luckham PF
    J Colloid Interface Sci; 2013 Apr; 396():1-8. PubMed ID: 23403115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Double-Faced Electrostatic Behavior of PNIPAm Microgels.
    Sennato S; Chauveau E; Casciardi S; Bordi F; Truzzolillo D
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33916554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of temperature and pH on the contraction and aggregation of microgels in aqueous suspensions.
    Al-Manasir N; Zhu K; Kjøniksen AL; Knudsen KD; Karlsson G; Nyström B
    J Phys Chem B; 2009 Aug; 113(32):11115-23. PubMed ID: 19618921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption.
    Kleinen J; Klee A; Richtering W
    Langmuir; 2010 Jul; 26(13):11258-65. PubMed ID: 20377221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between homopolypeptides and lightly cross-linked microgels.
    Bysell H; Malmsten M
    Langmuir; 2009 Jan; 25(1):522-8. PubMed ID: 19061315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic mesoporous silica/microgel core-shell responsive particles.
    Schmitt J; Hartwig C; Crassous JJ; Mihut AM; Schurtenberger P; Alfredsson V
    RSC Adv; 2020 Jun; 10(42):25393-25401. PubMed ID: 35517484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal sensitive microgels with stable and reversible photoluminescence based on covalently bonded quantum dots.
    Dou H; Yang W; Tao K; Li W; Sun K
    Langmuir; 2010 Apr; 26(7):5022-7. PubMed ID: 20201483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of polyelectrolyte microgel particles.
    Nur H; Pinkrah VT; Mitchell JC; Benée LS; Snowden MJ
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):15-20. PubMed ID: 19712922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of metal-enhanced fluorescence with pH- and thermoresponsive hybrid microgels.
    Tang F; Ma N; Tong L; He F; Li L
    Langmuir; 2012 Jan; 28(1):883-8. PubMed ID: 22067013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms.
    Brugger B; Vermant J; Richtering W
    Phys Chem Chem Phys; 2010 Nov; 12(43):14573-8. PubMed ID: 20941404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of pH Responsive Polystyrene and Polyvinyl Pyridine Nanospheres Stabilized by Mickering Microgel Emulsions.
    Atta AM; Ezzat AO; Al-Lohedan HA; Tawfeek AM; Alobaidi AA
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31816812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Responsivity of Solution-Suspended and Surface-Bound Poly(N-isopropylacrylamide)-Based Microgels for Sensing Applications.
    Li W; Hu L; Zhu J; Li D; Luan Y; Xu W; Serpe MJ
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26539-26548. PubMed ID: 28745477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor.
    Tzounis L; Doña M; Lopez-Romero JM; Fery A; Contreras-Caceres R
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29360-29372. PubMed ID: 31329406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid).
    Nigro V; Angelini R; Rosi B; Bertoldo M; Buratti E; Casciardi S; Sennato S; Ruzicka B
    J Colloid Interface Sci; 2019 Jun; 545():210-219. PubMed ID: 30889412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels.
    Agrawal M; Rubio-Retama J; Zafeiropoulos NE; Gaponik N; Gupta S; Cimrova V; Lesnyak V; López-Cabarcos E; Tzavalas S; Rojas-Reyna R; Eychmüller A; Stamm M
    Langmuir; 2008 Sep; 24(17):9820-4. PubMed ID: 18646871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels.
    Wu W; Zhou T; Aiello M; Zhou S
    Biosens Bioelectron; 2010 Aug; 25(12):2603-10. PubMed ID: 20471821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix.
    Musch J; Schneider S; Lindner P; Richtering W
    J Phys Chem B; 2008 May; 112(20):6309-14. PubMed ID: 18444673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.