These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31581143)

  • 1. Partial-ring PET image restoration using a deep learning based method.
    Liu CC; Huang HM
    Phys Med Biol; 2019 Nov; 64(22):225014. PubMed ID: 31581143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of missing data in partial geometry PET scanners: Compensation in projection space vs image space.
    Shojaeilangari S; Schmidtlein CR; Rahmim A; Ay MR
    Med Phys; 2018 Dec; 45(12):5437-5449. PubMed ID: 30288762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study of a point-of-care positron emission tomography system with interactive imaging capability.
    Jiang J; Li K; Komarov S; O'Sullivan JA; Tai YC
    Med Phys; 2019 Apr; 46(4):1798-1813. PubMed ID: 30667069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher SNR PET image prediction using a deep learning model and MRI image.
    Liu CC; Qi J
    Phys Med Biol; 2019 May; 64(11):115004. PubMed ID: 30844784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using compressive sensing to recover images from PET scanners with partial detector rings.
    Valiollahzadeh S; Clark JW; Mawlawi O
    Med Phys; 2015 Jan; 42(1):121-33. PubMed ID: 25563253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GapFill-Recon Net: A Cascade Network for simultaneously PET Gap Filling and Image Reconstruction.
    Huang Y; Zhu H; Duan X; Hong X; Sun H; Lv W; Lu L; Feng Q
    Comput Methods Programs Biomed; 2021 Sep; 208():106271. PubMed ID: 34274612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A back-projection-and-filtering-like (BPF-like) reconstruction method with the deep learning filtration from listmode data in TOF-PET.
    Lv L; Zeng GL; Zan Y; Hong X; Guo M; Chen G; Tao W; Ding W; Huang Q
    Med Phys; 2022 Apr; 49(4):2531-2544. PubMed ID: 35122265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution modeling in projection space using a factorized multi-block detector response function for PET image reconstruction.
    Xu H; Lenz M; Caldeira L; Ma B; Pietrzyk U; Lerche C; Shah NJ; Scheins J
    Phys Med Biol; 2019 Jul; 64(14):145012. PubMed ID: 31158824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning-based fast TOF-PET image reconstruction using direction information.
    Ote K; Hashimoto F
    Radiol Phys Technol; 2022 Mar; 15(1):72-82. PubMed ID: 35132574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems.
    Li K; Safavi-Naeini M; Franklin DR; Han Z; Rosenfeld AB; Hutton B; Lerch ML
    Phys Med Biol; 2015 Sep; 60(17):6949-73. PubMed ID: 26305868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
    Liu CC; Huang HM
    Phys Med; 2020 Jan; 69():110-119. PubMed ID: 31869575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble of neural networks for 3D position estimation in monolithic PET detectors.
    Iborra A; González AJ; González-Montoro A; Bousse A; Visvikis D
    Phys Med Biol; 2019 Oct; 64(19):195010. PubMed ID: 31416053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image reconstruction for positron emission tomography based on patch-based regularization and dictionary learning.
    Zhang W; Gao J; Yang Y; Liang D; Liu X; Zheng H; Hu Z
    Med Phys; 2019 Nov; 46(11):5014-5026. PubMed ID: 31494950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a 'multiPatchPET' system in GATE for a PET system design with irregular geometries.
    Chen G; Weng F; Hong X; Tao W; Zhao Z; Peng Q; Huang Q
    Phys Med Biol; 2018 Sep; 63(17):17NT02. PubMed ID: 30089100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projection Space Implementation of Deep Learning-Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space.
    Sanaat A; Arabi H; Mainta I; Garibotto V; Zaidi H
    J Nucl Med; 2020 Sep; 61(9):1388-1396. PubMed ID: 31924718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Image Quality via Transferred Deep Residual Learning of Coarse PET Sinograms.
    Hong X; Zan Y; Weng F; Tao W; Peng Q; Huang Q
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2322-2332. PubMed ID: 29993685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of Full Data from Sparse Data in Low-Dose Chest Digital Tomosynthesis Using Deep Convolutional Neural Networks.
    Lee D; Kim HJ
    J Digit Imaging; 2019 Jun; 32(3):489-498. PubMed ID: 30238345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.