BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31581291)

  • 1. Host-Specific Restriction of Avian Influenza Virus Caused by Differential Dynamics of ANP32 Family Members.
    Park YH; Chungu K; Lee SB; Woo SJ; Cho HY; Lee HJ; Rengaraj D; Lee JH; Song CS; Lim JM; Han JY
    J Infect Dis; 2020 Jan; 221(1):71-80. PubMed ID: 31581291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asp149 and Asp152 in chicken and human ANP32A play an essential role in the interaction with influenza viral polymerase.
    Park YH; Woo SJ; Chungu K; Lee SB; Shim JH; Lee HJ; Kim I; Rengaraj D; Song CS; Suh JY; Lim JM; Han JY
    FASEB J; 2021 Jun; 35(6):e21630. PubMed ID: 33982347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian ANP32A and ANP32B Proteins Drive Differential Polymerase Adaptations in Avian Influenza Virus.
    Peacock TP; Sheppard CM; Lister MG; Staller E; Frise R; Swann OC; Goldhill DH; Long JS; Barclay WS
    J Virol; 2023 May; 97(5):e0021323. PubMed ID: 37074204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity.
    Zhang H; Zhang Z; Wang Y; Wang M; Wang X; Zhang X; Ji S; Du C; Chen H; Wang X
    J Virol; 2019 Jul; 93(13):. PubMed ID: 30996088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANP32 Proteins Are Essential for Influenza Virus Replication in Human Cells.
    Staller E; Sheppard CM; Neasham PJ; Mistry B; Peacock TP; Goldhill DH; Long JS; Barclay WS
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31217244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KPNA6 is a Cofactor of ANP32A/B in Supporting Influenza Virus Polymerase Activity.
    Yu M; Sun L; Zhang Z; Zhang Y; Zhang H; Na L; Wang X
    Microbiol Spectr; 2022 Feb; 10(1):e0207321. PubMed ID: 35044222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective usage of ANP32 proteins by influenza B virus polymerase: Implications in determination of host range.
    Zhang Z; Zhang H; Xu L; Guo X; Wang W; Ji Y; Lin C; Wang Y; Wang X
    PLoS Pathog; 2020 Oct; 16(10):e1008989. PubMed ID: 33045004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs.
    Zhang H; Li H; Wang W; Wang Y; Han GZ; Chen H; Wang X
    PLoS Pathog; 2020 Feb; 16(2):e1008330. PubMed ID: 32084248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling host ANP32A splicing landscapes to predict influenza A virus polymerase adaptation.
    Domingues P; Eletto D; Magnus C; Turkington HL; Schmutz S; Zagordi O; Lenk M; Beer M; Stertz S; Hale BG
    Nat Commun; 2019 Jul; 10(1):3396. PubMed ID: 31363119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species specific differences in use of ANP32 proteins by influenza A virus.
    Long JS; Idoko-Akoh A; Mistry B; Goldhill D; Staller E; Schreyer J; Ross C; Goodbourn S; Shelton H; Skinner MA; Sang H; McGrew MJ; Barclay W
    Elife; 2019 Jun; 8():. PubMed ID: 31159925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avian Influenza A Virus Polymerase Can Utilize Human ANP32 Proteins To Support cRNA but Not vRNA Synthesis.
    Swann OC; Rasmussen AB; Peacock TP; Sheppard CM; Barclay WS
    mBio; 2023 Feb; 14(1):e0339922. PubMed ID: 36645303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swine ANP32A Supports Avian Influenza Virus Polymerase.
    Peacock TP; Swann OC; Salvesen HA; Staller E; Leung PB; Goldhill DH; Zhou H; Lillico SG; Whitelaw CBA; Long JS; Barclay WS
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Insights into ANP32A-Dependent Influenza A Virus Polymerase Host Restriction.
    Domingues P; Hale BG
    Cell Rep; 2017 Sep; 20(11):2538-2546. PubMed ID: 28903035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avian ANP32A incorporated in avian influenza A virions promotes interspecies transmission by priming early viral replication in mammals.
    Na L; Sun L; Yu M; Zhang Y; Zhang Y; Zhang Z; Zhang H; Qi T; Guo W; Guo X; Wang S; Wang J; Lin Y; Wang X
    Sci Adv; 2024 Feb; 10(5):eadj4163. PubMed ID: 38295177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating resistance to avian influenza infection through genome editing of the ANP32 gene family.
    Idoko-Akoh A; Goldhill DH; Sheppard CM; Bialy D; Quantrill JL; Sukhova K; Brown JC; Richardson S; Campbell C; Taylor L; Sherman A; Nazki S; Long JS; Skinner MA; Shelton H; Sang HM; Barclay WS; McGrew MJ
    Nat Commun; 2023 Oct; 14(1):6136. PubMed ID: 37816720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PB2 residue 473 contributes to the mammalian virulence of H7N9 avian influenza virus by modulating viral polymerase activity via ANP32A.
    Zhang M; Liu M; Chen H; Qiu T; Jin X; Fu W; Teng Q; Zhao C; Xu J; Li Z; Zhang X
    J Virol; 2024 Mar; 98(3):e0194423. PubMed ID: 38421166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species difference in ANP32A underlies influenza A virus polymerase host restriction.
    Long JS; Giotis ES; Moncorgé O; Frise R; Mistry B; James J; Morisson M; Iqbal M; Vignal A; Skinner MA; Barclay WS
    Nature; 2016 Jan; 529(7584):101-4. PubMed ID: 26738596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the Interactions between Influenza Virus Polymerase and Host Factor ANP32A.
    Mistry B; Long JS; Schreyer J; Staller E; Sanchez-David RY; Barclay WS
    J Virol; 2020 Jan; 94(3):. PubMed ID: 31694956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization.
    Sheppard CM; Goldhill DH; Swann OC; Staller E; Penn R; Platt OK; Sukhova K; Baillon L; Frise R; Peacock TP; Fodor E; Barclay WS
    Nat Commun; 2023 Oct; 14(1):6135. PubMed ID: 37816726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Host Factor ANP32A Is Required for Influenza A Virus vRNA and cRNA Synthesis.
    Nilsson-Payant BE; tenOever BR; Te Velthuis AJW
    J Virol; 2022 Feb; 96(4):e0209221. PubMed ID: 34935435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.