These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 31581426)

  • 21. Membrane targeting cationic antimicrobial peptides.
    Ciumac D; Gong H; Hu X; Lu JR
    J Colloid Interface Sci; 2019 Mar; 537():163-185. PubMed ID: 30439615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The proteome targets of intracellular targeting antimicrobial peptides.
    Shah P; Hsiao FS; Ho YH; Chen CS
    Proteomics; 2016 Apr; 16(8):1225-37. PubMed ID: 26648572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope.
    Frimodt-Møller J; Campion C; Nielsen PE; Løbner-Olesen A
    Curr Genet; 2022 Feb; 68(1):83-90. PubMed ID: 34750687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.
    Schmitt P; Rosa RD; Destoumieux-Garzón D
    Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections.
    Buccini DF; Cardoso MH; Franco OL
    Front Cell Infect Microbiol; 2020; 10():612931. PubMed ID: 33614528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions.
    Bhattacharjya S
    Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides.
    Ghosh C; Haldar J
    ChemMedChem; 2015 Oct; 10(10):1606-24. PubMed ID: 26386345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs.
    Kopeikin PM; Zharkova MS; Kolobov AA; Smirnova MP; Sukhareva MS; Umnyakova ES; Kokryakov VN; Orlov DS; Milman BL; Balandin SV; Panteleev PV; Ovchinnikova TV; Komlev AS; Tossi A; Shamova OV
    Front Cell Infect Microbiol; 2020; 10():552905. PubMed ID: 33194795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity.
    Chou HT; Wen HW; Kuo TY; Lin CC; Chen WJ
    Peptides; 2010 Oct; 31(10):1811-20. PubMed ID: 20600422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.
    Hale JD; Hancock RE
    Expert Rev Anti Infect Ther; 2007 Dec; 5(6):951-9. PubMed ID: 18039080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58.
    Vasilchenko AS; Vasilchenko AV; Pashkova TM; Smirnova MP; Kolodkin NI; Manukhov IV; Zavilgelsky GB; Sizova EA; Kartashova OL; Simbirtsev AS; Rogozhin EA; Duskaev GK; Sycheva MV
    J Pept Sci; 2017 Dec; 23(12):855-863. PubMed ID: 29193518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving short antimicrobial peptides despite elusive rules for activity.
    Mikut R; Ruden S; Reischl M; Breitling F; Volkmer R; Hilpert K
    Biochim Biophys Acta; 2016 May; 1858(5):1024-33. PubMed ID: 26687790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial Peptides: Phylogenic Sources and Biological Activities. First of Two Parts.
    Magrone T; Russo MA; Jirillo E
    Curr Pharm Des; 2018; 24(10):1043-1053. PubMed ID: 29611476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biophysical characterization of antimicrobial peptides activity: from in vitro to ex vivo techniques.
    Aquila M; Benedusi M; Dell'Orco D
    Curr Protein Pept Sci; 2013 Nov; 14(7):607-16. PubMed ID: 24106959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insect-derived short proline-rich and murine cathelicidin-related antimicrobial peptides act synergistically on Gram-negative bacteria in vitro.
    Knappe D; Kabankov N; Herth N; Hoffmann R
    Future Med Chem; 2016 Jun; 8(10):1035-45. PubMed ID: 27285299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular Antimicrobial Peptides Targeting the Protein Synthesis Machinery.
    Graf M; Wilson DN
    Adv Exp Med Biol; 2019; 1117():73-89. PubMed ID: 30980354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination.
    Sinha S; Zheng L; Mu Y; Ng WJ; Bhattacharjya S
    Sci Rep; 2017 Dec; 7(1):17795. PubMed ID: 29259246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.