BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31581436)

  • 41. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function.
    Barreiro Carpio M; Dabaghi M; Ungureanu J; Kolb MR; Hirota JA; Moran-Mirabal JM
    Front Bioeng Biotechnol; 2021; 9():773511. PubMed ID: 34900964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioprinting stem cells: building physiological tissues one cell at a time.
    Scognamiglio C; Soloperto A; Ruocco G; Cidonio G
    Am J Physiol Cell Physiol; 2020 Sep; 319(3):C465-C480. PubMed ID: 32639873
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting.
    Liu H; Gong Y; Zhang K; Ke S; Wang Y; Wang J; Wang H
    Gels; 2023 Mar; 9(3):. PubMed ID: 36975644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications.
    Sultan MT; Lee OJ; Lee JS; Park CH
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine.
    Jamieson C; Keenan P; Kirkwood D; Oji S; Webster C; Russell KA; Koch TG
    Front Vet Sci; 2020; 7():584193. PubMed ID: 33665213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus.
    Berg J; Hiller T; Kissner MS; Qazi TH; Duda GN; Hocke AC; Hippenstiel S; Elomaa L; Weinhart M; Fahrenson C; Kurreck J
    Sci Rep; 2018 Sep; 8(1):13877. PubMed ID: 30224659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extrusion of Cell Encapsulated in Boron Nitride Nanotubes Reinforced Gelatin-Alginate Bioink for 3D Bioprinting.
    Kakarla AB; Kong I; Kong C; Irving H; Thomas CJ
    Gels; 2022 Sep; 8(10):. PubMed ID: 36286104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Bioprinted Multicellular Vascular Models.
    Gold KA; Saha B; Rajeeva Pandian NK; Walther BK; Palma JA; Jo J; Cooke JP; Jain A; Gaharwar AK
    Adv Healthc Mater; 2021 Nov; 10(21):e2101141. PubMed ID: 34310082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D bioprinting for modelling vasculature.
    Sasmal P; Datta P; Wu Y; Ozbolat IT
    Microphysiol Syst; 2018 Nov; 2():. PubMed ID: 30931432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink.
    Chae S; Lee SS; Choi YJ; Hong DH; Gao G; Wang JH; Cho DW
    Biomaterials; 2021 Jan; 267():120466. PubMed ID: 33130320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink.
    Sawyer SW; Takeda K; Alayoubi A; Mirdamadi E; Zidan A; Bauer SR; Degheidy H
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36395510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration.
    Zhou F; Hong Y; Liang R; Zhang X; Liao Y; Jiang D; Zhang J; Sheng Z; Xie C; Peng Z; Zhuang X; Bunpetch V; Zou Y; Huang W; Zhang Q; Alakpa EV; Zhang S; Ouyang H
    Biomaterials; 2020 Nov; 258():120287. PubMed ID: 32847683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D Bioprinting and Its Application to Military Medicine.
    Betz JF; Ho VB; Gaston JD
    Mil Med; 2020 Sep; 185(9-10):e1510-e1519. PubMed ID: 32514549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.