BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31581449)

  • 1. Target-Specific Action Classification for Automated Assessment of Human Motor Behavior from Video.
    Rezaei B; Christakis Y; Ho B; Thomas K; Erb K; Ostadabbas S; Patel S
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Laboratory Mouse Activity in Video Recordings Using Deep Learning Methods.
    Kopaczka M; Tillmann D; Ernst L; Schock J; Tolba R; Merhof D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3673-3676. PubMed ID: 31946673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the accuracy and reliability of motion tracking methods used for extracting temporal motor activity signals from video recordings of neonatal seizures.
    Karayiannis NB; Xiong Y; Frost JD; Wise MS; Mizrahi EM
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):747-9. PubMed ID: 15825878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional face pose detection and tracking using monocular videos: tool and application.
    Dornaika F; Raducanu B
    IEEE Trans Syst Man Cybern B Cybern; 2009 Aug; 39(4):935-44. PubMed ID: 19336335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Object Tracking in Heterogeneous environments (MOTHe) for animal video recordings.
    Rathore A; Sharma A; Shah S; Sharma N; Torney C; Guttal V
    PeerJ; 2023; 11():e15573. PubMed ID: 37397020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors.
    Airaksinen M; Räsänen O; Ilén E; Häyrinen T; Kivi A; Marchi V; Gallen A; Blom S; Varhe A; Kaartinen N; Haataja L; Vanhatalo S
    Sci Rep; 2020 Jan; 10(1):169. PubMed ID: 31932616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
    Mathis A; Mamidanna P; Cury KM; Abe T; Murthy VN; Mathis MW; Bethge M
    Nat Neurosci; 2018 Sep; 21(9):1281-1289. PubMed ID: 30127430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.
    Wei H; Jafari R; Kehtarnavaz N
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching.
    Karayiannis NB; Sami A; Frost JD; Wise MS; Mizrahi EM
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):676-86. PubMed ID: 15825869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.
    Zhang K; Li D; Huang J; Chen Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation of the Timed-Up-and-Go Test Using a Conventional Video Camera.
    Savoie P; Cameron JAD; Kaye ME; Scheme EJ
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):1196-1205. PubMed ID: 31403450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking Multiple Video Targets with an Improved GM-PHD Tracker.
    Zhou X; Yu H; Liu H; Li Y
    Sensors (Basel); 2015 Dec; 15(12):30240-60. PubMed ID: 26633422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning and Clustering Extraction Mechanism for Recognizing the Actions of Athletes in Sports.
    Yang J
    Comput Intell Neurosci; 2022; 2022():2663834. PubMed ID: 35371202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convolutional neural network approach for objective video quality assessment.
    Le Callet P; Viard-Gaudin C; Barba D
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1316-27. PubMed ID: 17001990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Attention Models for Human Tracking Using RGBD.
    Rasoulidanesh M; Yadav S; Herath S; Vaghei Y; Payandeh S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedging Deep Features for Visual Tracking.
    Qi Y; Zhang S; Qin L; Huang Q; Yao H; Lim J; Yang MH
    IEEE Trans Pattern Anal Mach Intell; 2019 May; 41(5):1116-1130. PubMed ID: 29993908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning.
    Chaichulee S; Villarroel M; Jorge J; Arteta C; McCormick K; Zisserman A; Tarassenko L
    Physiol Meas; 2019 Dec; 40(11):115001. PubMed ID: 31661680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Attention Network for Egocentric Action Recognition.
    Lu M; Li ZN; Wang Y; Pan G
    IEEE Trans Image Process; 2019 Aug; 28(8):3703-3713. PubMed ID: 30835222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of epileptic motor manifestations using inertial and magnetic sensors.
    Becq G; Bonnet S; Minotti L; Antonakios M; Guillemaud R; Kahane P
    Comput Biol Med; 2011 Jan; 41(1):46-55. PubMed ID: 21112583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.