These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31581449)

  • 81. Fight Recognition in video using Hough Forests and 2D Convolutional Neural Network.
    Serrano I; Deniz O; Espinosa-Aranda JL; Bueno G
    IEEE Trans Image Process; 2018 Oct; 27(10):4787-4797. PubMed ID: 29994215
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A robust likelihood function for 3D human pose tracking.
    Zhang W; Shang L; Chan AB
    IEEE Trans Image Process; 2014 Dec; 23(12):5374-89. PubMed ID: 25347879
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D.
    Newby JM; Schaefer AM; Lee PT; Forest MG; Lai SK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):9026-9031. PubMed ID: 30135100
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network.
    Gómez P; Semmler M; Schützenberger A; Bohr C; Döllinger M
    Med Biol Eng Comput; 2019 Jul; 57(7):1451-1463. PubMed ID: 30900057
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network.
    Li D; Wang R; Xie C; Liu L; Zhang J; Li R; Wang F; Zhou M; Liu W
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973039
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System.
    Liu C; Wang Y; Gao S
    Comput Intell Neurosci; 2016; 2016():6040232. PubMed ID: 27379165
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Social Grouping for Multi-Target Tracking and Head Pose Estimation in Video.
    Qin Z; Shelton CR
    IEEE Trans Pattern Anal Mach Intell; 2016 Oct; 38(10):2082-95. PubMed ID: 26660698
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Video segmentation of moving humans for assistive environments.
    Maglogiannis I; Delibasis KK; Goudas T; Prentza A; Malamateniou F; Vassilacopoulos G
    Stud Health Technol Inform; 2013; 190():179-82. PubMed ID: 23823415
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Quantifying motion in video recordings of neonatal seizures by robust motion trackers based on block motion models.
    Karayiannis NB; Xiong Y; Frost JD; Wise MS; Mizrahi EM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1065-77. PubMed ID: 15977736
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
    Ming Y; Wang G; Fan C
    PLoS One; 2015; 10(5):e0124640. PubMed ID: 25942404
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Animated pose templates for modeling and detecting human actions.
    Yao BZ; Nie BX; Liu Z; Zhu SC
    IEEE Trans Pattern Anal Mach Intell; 2014 Mar; 36(3):436-52. PubMed ID: 24457502
    [TBL] [Abstract][Full Text] [Related]  

  • 92. DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information.
    Arapi V; Della Santina C; Bacciu D; Bianchi M; Bicchi A
    Front Neurorobot; 2018; 12():86. PubMed ID: 30618707
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Machine learning-based automated phenotyping of inflammatory nocifensive behavior in mice.
    Wotton JM; Peterson E; Anderson L; Murray SA; Braun RE; Chesler EJ; White JK; Kumar V
    Mol Pain; 2020; 16():1744806920958596. PubMed ID: 32955381
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Novel Approach for 3D-Structural Identification through Video Recording: Magnified Tracking.
    Harmanci YE; Gülan U; Holzner M; Chatzi E
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30862051
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Visual Tracking via Deep Feature Fusion and Correlation Filters.
    Xia H; Zhang Y; Yang M; Zhao AY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545916
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Automated detection and analysis of foraging behavior in Caenorhabditis elegans.
    Huang KM; Cosman P; Schafer WR
    J Neurosci Methods; 2008 Jun; 171(1):153-64. PubMed ID: 18342950
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Validation of a digital video tracking system for recording pig locomotor behaviour.
    Lind NM; Vinther M; Hemmingsen RP; Hansen AK
    J Neurosci Methods; 2005 Apr; 143(2):123-32. PubMed ID: 15814144
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Noninvasive Tracking of Every Individual in Unmarked Mouse Groups Using Multi-Camera Fusion and Deep Learning.
    Su F; Wang Y; Wei M; Wang C; Wang S; Yang L; Li J; Yuan P; Luo DG; Zhang C
    Neurosci Bull; 2023 Jun; 39(6):893-910. PubMed ID: 36571715
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Conditional filters for image sequence-based tracking--application to point tracking.
    Arnaud E; Mémin E; Cernuschi-Frías B
    IEEE Trans Image Process; 2005 Jan; 14(1):63-79. PubMed ID: 15646873
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Respiratory Rate Estimation from Thermal Video Data Using Spatio-Temporal Deep Learning.
    Mozafari M; Law AJ; Goubran RA; Green JR
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.