BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 31581611)

  • 1. Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review.
    Zhang W; Liu Y; Zhang L; Chen J
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31581611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries.
    Xie X; Zhai Z; Peng L; Zhang J; Shang L; Zhang T
    Sci Bull (Beijing); 2023 Nov; 68(22):2862-2875. PubMed ID: 37884426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Metal-Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries.
    Wu M; Zhang G; Wang W; Yang H; Rawach D; Chen M; Sun S
    Small Methods; 2022 Mar; 6(3):e2100947. PubMed ID: 35037425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress on Fe-Based Single/Dual-Atom Catalysts for Zn-Air Batteries.
    Liu H; Yu F; Wu K; Xu G; Wu C; Liu HK; Dou SX
    Small; 2022 Oct; 18(43):e2106635. PubMed ID: 35218294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives.
    Dong F; Wu M; Chen Z; Liu X; Zhang G; Qiao J; Sun S
    Nanomicro Lett; 2021 Dec; 14(1):36. PubMed ID: 34918185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design.
    Zhang P; Chen K; Li J; Wang M; Li M; Liu Y; Pan Y
    Adv Mater; 2023 Sep; 35(35):e2303243. PubMed ID: 37283478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries.
    Chang H; Cong S; Wang L; Wang C
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization.
    Qin Y; Ou Z; Xu C; Zhang Z; Yi J; Jiang Y; Wu J; Guo C; Si Y; Zhao T
    Nanoscale Res Lett; 2021 May; 16(1):92. PubMed ID: 34032941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery.
    Liu X; Zhang G; Wang L; Fu H
    Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-atom catalysts for high-energy rechargeable batteries.
    Tian H; Song A; Tian H; Liu J; Shao G; Liu H; Wang G
    Chem Sci; 2021 May; 12(22):7656-7676. PubMed ID: 34168819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-noble metal single-atoms for oxygen electrocatalysis in rechargeable zinc-air batteries: recent developments and future perspectives.
    Li L; Xu J; Zhu Q; Meng X; Xu H; Han M
    Dalton Trans; 2024 Jan; 53(5):1915-1934. PubMed ID: 38192245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries.
    Dong F; Wu M; Zhang G; Liu X; Rawach D; Tavares AC; Sun S
    Chem Asian J; 2020 Nov; 15(22):3737-3751. PubMed ID: 32997441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-based composites for rechargeable zinc-air batteries: A mini review.
    Liu Y; Lu J; Xu S; Zhang W; Gao D
    Front Chem; 2022; 10():1074984. PubMed ID: 36465872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries.
    Zhu Y; Yue K; Xia C; Zaman S; Yang H; Wang X; Yan Y; Xia BY
    Nanomicro Lett; 2021 Jun; 13(1):137. PubMed ID: 34138394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Ligand Fields in a Single-Atom Site by the Molten Salt Strategy for Enhanced Oxygen Bifunctional Activity for Zinc-Air Batteries.
    Wang K; Lu Z; Lei J; Liu Z; Li Y; Cao Y
    ACS Nano; 2022 Aug; 16(8):11944-11956. PubMed ID: 35880812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Transition-Metal-Based Dual-Atom Oxygen Electrocatalysts.
    He Y; Zhou X; Jia Y; Li H; Wang Y; Liu Y; Tan Q
    Small; 2023 Sep; 19(37):e2206477. PubMed ID: 37147778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions.
    Hu R; Li Y; Wang F; Shang J
    Nanoscale; 2020 Oct; 12(39):20413-20424. PubMed ID: 33026034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.