These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31581960)

  • 1. Strain variations in cone wavelength peaks
    Nelson RF; Balraj A; Suresh T; Torvund M; Patterson SS
    Vis Neurosci; 2019 Jul; 36():E010. PubMed ID: 31581960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ganglion cells in larval zebrafish retina integrate inputs from multiple cone types.
    Connaughton VP; Nelson R
    J Neurophysiol; 2021 Oct; 126(4):1440-1454. PubMed ID: 34550015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spectral model for signal elements isolated from zebrafish photopic electroretinogram.
    Nelson RF; Singla N
    Vis Neurosci; 2009; 26(4):349-63. PubMed ID: 19723365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Developmental Progression of Eight Opsin Spectral Signals Recorded from the Zebrafish Retinal Cone Layer Is Altered by the Timing and Cell Type Expression of Thyroxin Receptor β2 (trβ2) Gain-Of-Function Transgenes.
    Nelson RF; Balraj A; Suresh T; Elias LJ; Yoshimatsu T; Patterson SS
    eNeuro; 2022; 9(6):. PubMed ID: 36351817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cone contributions to the photopic spectral sensitivity of the zebrafish ERG.
    Hughes A; Saszik S; Bilotta J; Demarco PJ; Patterson WF
    Vis Neurosci; 1998; 15(6):1029-37. PubMed ID: 9839967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of restricted spectral rearing on the development of zebrafish retinal physiology.
    Dixon LJ; McDowell AL; Houchins JD; Bilotta J
    Doc Ophthalmol; 2004 Jul; 109(1):17-33. PubMed ID: 15675197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish.
    Cameron DA
    Vis Neurosci; 2002; 19(3):365-72. PubMed ID: 12392184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral responses in zebrafish horizontal cells include a tetraphasic response and a novel UV-dominated triphasic response.
    Connaughton VP; Nelson R
    J Neurophysiol; 2010 Nov; 104(5):2407-22. PubMed ID: 20610786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet- and short-wavelength cone contributions alter the early components of the ERG of young zebrafish.
    Bilotta J; Trace SE; Vukmanic EV; Risner ML
    Int J Dev Neurosci; 2005 Feb; 23(1):15-25. PubMed ID: 15730883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APB differentially affects the cone contributions to the zebrafish ERG.
    Saszik S; Alexander A; Lawrence T; Bilotta J
    Vis Neurosci; 2002; 19(4):521-9. PubMed ID: 12511084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny of cone photoreceptor mosaics in zebrafish.
    Allison WT; Barthel LK; Skebo KM; Takechi M; Kawamura S; Raymond PA
    J Comp Neurol; 2010 Oct; 518(20):4182-95. PubMed ID: 20878782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors.
    Suzuki SC; Bleckert A; Williams PR; Takechi M; Kawamura S; Wong RO
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):15109-14. PubMed ID: 23980162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connectivity of cone photoreceptor telodendria in the zebrafish retina.
    Noel NCL; Allison WT
    J Comp Neurol; 2018 Mar; 526(4):609-625. PubMed ID: 29127712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ERG assessment of zebrafish retinal development.
    Saszik S; Bilotta J; Givin CM
    Vis Neurosci; 1999; 16(5):881-8. PubMed ID: 10580723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrachromatic input to turtle horizontal cells.
    Zana Y; Ventura DF; de Souza JM; DeVoe RD
    Vis Neurosci; 2001; 18(5):759-65. PubMed ID: 11925011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics.
    Kremers J; Stepien MW; Scholl HP; Saito C
    J Vis; 2003; 3(2):146-60. PubMed ID: 12678617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One month of hyperglycemia alters spectral responses of the zebrafish photopic electroretinogram.
    Tanvir Z; Nelson RF; DeCicco-Skinner K; Connaughton VP
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30158110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroretinogram Recording in Larval Zebrafish using A Novel Cone-Shaped Sponge-tip Electrode.
    Xie J; Jusuf PR; Goodbourn PT; Bui BV
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30985748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.