These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31582054)

  • 1. Anisotropic nanocellulose gel-membranes for drug delivery: Tailoring structure and interface by sequential periodate-chlorite oxidation.
    Plappert SF; Liebner FW; Konnerth J; Nedelec JM
    Carbohydr Polym; 2019 Dec; 226():115306. PubMed ID: 31582054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery.
    Qindeel M; Ahmed N; Sabir F; Khan S; Ur-Rehman A
    Drug Dev Ind Pharm; 2019 Apr; 45(4):629-641. PubMed ID: 30633578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery.
    Zong S; Wen H; Lv H; Li T; Tang R; Liu L; Jiang J; Wang S; Duan J
    Carbohydr Polym; 2022 Feb; 278():118943. PubMed ID: 34973761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation.
    Liimatainen H; Visanko M; Sirviö JA; Hormi OE; Niinimaki J
    Biomacromolecules; 2012 May; 13(5):1592-7. PubMed ID: 22512713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
    Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T
    Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.
    Munier P; Gordeyeva K; Bergström L; Fall AB
    Biomacromolecules; 2016 May; 17(5):1875-81. PubMed ID: 27071304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdermal Lipid Nanocarriers: A Potential Delivery System for Lornoxicam.
    Dasgupta S; Ray S; Dey S; Pal P; Mazumder B
    Pharm Nanotechnol; 2017; 5(1):32-43. PubMed ID: 28948909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of ultrathin nanocellulose shells on tough microparticles via an emulsion-templated colloidal assembly: towards versatile carrier materials.
    Fujisawa S; Togawa E; Kuroda K; Saito T; Isogai A
    Nanoscale; 2019 Aug; 11(32):15004-15009. PubMed ID: 31298680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique.
    Müller A; Wesarg F; Hessler N; Müller FA; Kralisch D; Fischer D
    Carbohydr Polym; 2014 Jun; 106():410-3. PubMed ID: 24721096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release.
    Paukkonen H; Kunnari M; Laurén P; Hakkarainen T; Auvinen VV; Oksanen T; Koivuniemi R; Yliperttula M; Laaksonen T
    Int J Pharm; 2017 Oct; 532(1):269-280. PubMed ID: 28888974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation.
    El-Habashy SE; Allam AN; El-Kamel AH
    Int J Nanomedicine; 2016; 11():2369-80. PubMed ID: 27307735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam.
    Lachowicz D; Kaczyńska A; Bodzon-Kulakowska A; Karewicz A; Wirecka R; Szuwarzyński M; Zapotoczny S
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerated cellulose micro-nano fiber matrices for transdermal drug release.
    Liu Y; Nguyen A; Allen A; Zoldan J; Huang Y; Chen JY
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():485-492. PubMed ID: 28254322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.
    Carlsson DO; Hua K; Forsgren J; Mihranyan A
    Int J Pharm; 2014 Jan; 461(1-2):74-81. PubMed ID: 24291076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Celery cellulose hydrogel as carriers for controlled release of short-chain fatty acid by ultrasound.
    Yan L; Wang L; Gao S; Liu C; Zhang Z; Ma A; Zheng L
    Food Chem; 2020 Mar; 309():125717. PubMed ID: 31699559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of Fe
    Fakhri A; Tahami S; Nejad PA
    J Photochem Photobiol B; 2017 Oct; 175():83-88. PubMed ID: 28865318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release.
    Tamahkar E; Bakhshpour M; Denizli A
    J Biomater Sci Polym Ed; 2019 Apr; 30(6):450-461. PubMed ID: 30773098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of operational variables on properties of piroxicam pellets prepared by extrusion-spheronization: a technical note.
    Sinha VR; Agrawal MK; Kumria R; Bhinge JR
    AAPS PharmSciTech; 2007 Mar; 8(1):20. PubMed ID: 17408219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.
    Kong BJ; Kim A; Park SN
    Carbohydr Polym; 2016 Aug; 147():473-481. PubMed ID: 27178954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.