These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31582528)

  • 1. Functional Localization of the Frontal Eye Fields in the Common Marmoset Using Microstimulation.
    Selvanayagam J; Johnston KD; Schaeffer DJ; Hayrynen LK; Everling S
    J Neurosci; 2019 Nov; 39(46):9197-9206. PubMed ID: 31582528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets.
    Ghahremani M; Johnston KD; Ma L; Hayrynen LK; Everling S
    J Neurophysiol; 2019 Oct; 122(4):1765-1776. PubMed ID: 31483706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual responses in the dorsolateral frontal cortex of marmoset monkeys.
    Feizpour A; Majka P; Chaplin TA; Rowley D; Yu HH; Zavitz E; Price NSC; Rosa MGP; Hagan MA
    J Neurophysiol; 2021 Jan; 125(1):296-304. PubMed ID: 33326337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey.
    Schaeffer DJ; Gilbert KM; Hori Y; Hayrynen LK; Johnston KD; Gati JS; Menon RS; Everling S
    Neuroimage; 2019 Nov; 202():116147. PubMed ID: 31479755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad.
    Johnston K; Ma L; Schaeffer L; Everling S
    J Neurosci; 2019 Mar; 39(10):1855-1866. PubMed ID: 30651331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for chair restraint and training of the common marmoset on oculomotor tasks.
    Johnston KD; Barker K; Schaeffer L; Schaeffer D; Everling S
    J Neurophysiol; 2018 May; 119(5):1636-1646. PubMed ID: 29364068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections.
    Huerta MF; Krubitzer LA; Kaas JH
    J Comp Neurol; 1987 Nov; 265(3):332-61. PubMed ID: 2447132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys.
    Stanton GB; Deng SY; Goldberg ME; McMullen NT
    J Comp Neurol; 1989 Apr; 282(3):415-27. PubMed ID: 2715390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task.
    Ma L; Selvanayagam J; Ghahremani M; Hayrynen LK; Johnston KD; Everling S
    J Neurophysiol; 2020 Mar; 123(3):896-911. PubMed ID: 31967927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
    Knight TA; Fuchs AF
    J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields.
    Russo GS; Bruce CJ
    J Neurophysiol; 1993 Mar; 69(3):800-18. PubMed ID: 8385196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated?
    Basu D; Murthy A
    J Neurophysiol; 2020 Jan; 123(1):107-119. PubMed ID: 31721632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements.
    Bruce CJ; Goldberg ME; Bushnell MC; Stanton GB
    J Neurophysiol; 1985 Sep; 54(3):714-34. PubMed ID: 4045546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network.
    D'Souza JF; Price NSC; Hagan MA
    Brain Struct Funct; 2021 Dec; 226(9):3007-3022. PubMed ID: 34518902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention governs action in the primate frontal eye field.
    Schafer RJ; Moore T
    Neuron; 2007 Nov; 56(3):541-51. PubMed ID: 17988636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically evoked saccades from the dorsomedial frontal cortex and frontal eye fields: a parametric evaluation reveals differences between areas.
    Tehovnik EJ; Sommer MA
    Exp Brain Res; 1997 Dec; 117(3):369-78. PubMed ID: 9438704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of FEF microstimulation on the responses of neurons in the lateral intraparietal area.
    Premereur E; Vanduffel W; Janssen P
    J Cogn Neurosci; 2014 Aug; 26(8):1672-84. PubMed ID: 24564460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area.
    Premereur E; Vanduffel W; Roelfsema PR; Janssen P
    J Neurophysiol; 2012 Sep; 108(5):1392-402. PubMed ID: 22673327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation.
    Matsumoto M; Inoue KI; Takada M
    Front Neural Circuits; 2018; 12():69. PubMed ID: 30210307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.