These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31582789)

  • 1. Signal flow control of complex signaling networks.
    Lee D; Cho KH
    Sci Rep; 2019 Oct; 9(1):14289. PubMed ID: 31582789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological estimation of signal flow in complex signaling networks.
    Lee D; Cho KH
    Sci Rep; 2018 Mar; 8(1):5262. PubMed ID: 29588498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks.
    Malekpour SA; Alizad-Rahvar AR; Sadeghi M
    BMC Bioinformatics; 2020 Jul; 21(1):318. PubMed ID: 32690031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring information flow in cellular networks by the systems biology method through microarray data.
    Chen BS; Li CW
    Front Plant Sci; 2015; 6():390. PubMed ID: 26082788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for inverse bifurcation of biochemical switches: inferring parameters from dose response curves.
    Otero-Muras I; Yordanov P; Stelling J
    BMC Syst Biol; 2014 Nov; 8():114. PubMed ID: 25409687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks.
    Fröhlich F; Kaltenbacher B; Theis FJ; Hasenauer J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005331. PubMed ID: 28114351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction in the face of uncertainty: a Monte Carlo-based approach for systems biology of cancer treatment.
    Wierling C; Kühn A; Hache H; Daskalaki A; Maschke-Dutz E; Peycheva S; Li J; Herwig R; Lehrach H
    Mutat Res; 2012 Aug; 746(2):163-70. PubMed ID: 22285941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection.
    Popik OV; Petrovskiy ED; Mishchenko EL; Lavrik IN; Ivanisenko VA
    Virus Res; 2016 Jun; 218():71-8. PubMed ID: 26481968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Driver Nodes in the Human Signaling Network Using Structural Controllability Analysis.
    Liu X; Pan L
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):467-72. PubMed ID: 26357232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.
    Narimani Z; Beigy H; Ahmad A; Masoudi-Nejad A; Fröhlich H
    PLoS One; 2017; 12(2):e0171240. PubMed ID: 28166542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information.
    Assmann SM; Albert R
    Methods Mol Biol; 2009; 553():207-25. PubMed ID: 19588107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Sensitivity Analysis to Discover Potential Molecular Drug Targets.
    Kardynska M; Smieja J; Paszek P; Puszynski K
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.
    Mcclenny LD; Imani M; Braga-Neto UM
    BMC Bioinformatics; 2017 Nov; 18(1):519. PubMed ID: 29178844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation capacities of a broad class of signaling networks are higher than their communication capacities.
    Habibi I; Emamian ES; Simeone O; Abdi A
    Phys Biol; 2019 Oct; 16(6):064001. PubMed ID: 31505478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk.
    Papin JA; Palsson BO
    J Theor Biol; 2004 Mar; 227(2):283-97. PubMed ID: 14990392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data-Application to the ErbB Receptor Signaling Pathway.
    Imoto H; Zhang S; Okada M
    Cancers (Basel); 2020 Oct; 12(10):. PubMed ID: 33036375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implicit methods for qualitative modeling of gene regulatory networks.
    Garg A; Mohanram K; De Micheli G; Xenarios I
    Methods Mol Biol; 2012; 786():397-443. PubMed ID: 21938638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.