BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31582815)

  • 1. Effect of non-normality and low count variants on cross-phenotype association tests in GWAS.
    Ray D; Chatterjee N
    Eur J Hum Genet; 2020 Mar; 28(3):300-312. PubMed ID: 31582815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel association test for multiple secondary phenotypes from a case-control GWAS.
    Ray D; Basu S
    Genet Epidemiol; 2017 Jul; 41(5):413-426. PubMed ID: 28393390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for meta-analysis of multiple traits using GWAS summary statistics.
    Ray D; Boehnke M
    Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.
    Majumdar A; Witte JS; Ghosh S
    Genet Epidemiol; 2015 Dec; 39(8):635-50. PubMed ID: 26493781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of adaptive multiple phenotype association tests using summary statistics in genome-wide association studies.
    Sitlani CM; Baldassari AR; Highland HM; Hodonsky CJ; McKnight B; Avery CL
    Hum Mol Genet; 2021 Jul; 30(15):1371-1383. PubMed ID: 33949650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rank-based normalization method with the fully adjusted full-stage procedure in genetic association studies.
    Chien LC
    PLoS One; 2020; 15(6):e0233847. PubMed ID: 32559184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data.
    Zhang J; Xie S; Gonzales S; Liu J; Wang X
    Genet Epidemiol; 2020 Sep; 44(6):550-563. PubMed ID: 32350919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Framework for Interpreting Type I Error Rates from a Product-Term Model of Interaction Applied to Quantitative Traits.
    Rao TJ; Province MA
    Genet Epidemiol; 2016 Feb; 40(2):144-53. PubMed ID: 26659945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data.
    Guo B; Wu B
    Bioinformatics; 2019 Apr; 35(8):1366-1372. PubMed ID: 30239606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signatures of negative selection in the genetic architecture of human complex traits.
    Zeng J; de Vlaming R; Wu Y; Robinson MR; Lloyd-Jones LR; Yengo L; Yap CX; Xue A; Sidorenko J; McRae AF; Powell JE; Montgomery GW; Metspalu A; Esko T; Gibson G; Wray NR; Visscher PM; Yang J
    Nat Genet; 2018 May; 50(5):746-753. PubMed ID: 29662166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Phenotype Association Analysis Using Summary Statistics from GWAS.
    Li X; Zhu X
    Methods Mol Biol; 2017; 1666():455-467. PubMed ID: 28980259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional analysis of multiple quantitative traits based on marginal GWAS summary statistics.
    Deng Y; Pan W
    Genet Epidemiol; 2017 Jul; 41(5):427-436. PubMed ID: 28464407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort.
    Galván-Femenía I; Obón-Santacana M; Piñeyro D; Guindo-Martinez M; Duran X; Carreras A; Pluvinet R; Velasco J; Ramos L; Aussó S; Mercader JM; Puig L; Perucho M; Torrents D; Moreno V; Sumoy L; de Cid R
    J Med Genet; 2018 Nov; 55(11):765-778. PubMed ID: 30166351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of Summary Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio.
    Lloyd-Jones LR; Robinson MR; Yang J; Visscher PM
    Genetics; 2018 Apr; 208(4):1397-1408. PubMed ID: 29429966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between Type 2 Diabetes and Prostate Cancer.
    Ray D; Chatterjee N
    PLoS Genet; 2020 Dec; 16(12):e1009218. PubMed ID: 33290408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of shared genomic loci using the conditional false discovery rate approach.
    Smeland OB; Frei O; Shadrin A; O'Connell K; Fan CC; Bahrami S; Holland D; Djurovic S; Thompson WK; Dale AM; Andreassen OA
    Hum Genet; 2020 Jan; 139(1):85-94. PubMed ID: 31520123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of approaches for rare variant association analyses of binary traits in related samples.
    Chen MH; Pitsillides A; Yang Q
    Sci Rep; 2021 Feb; 11(1):3145. PubMed ID: 33542345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.