BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 31583510)

  • 1. An assessment of temporal trends in mercury concentrations in fish.
    Grieb TM; Fisher NS; Karimi R; Levin L
    Ecotoxicology; 2020 Dec; 29(10):1739-1749. PubMed ID: 31583510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview.
    Evans MS; Muir D; Lockhart WL; Stern G; Ryan M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():94-147. PubMed ID: 16225909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury trends in fish from rivers and lakes in the United States, 1969-2005.
    Chalmers AT; Argue DM; Gay DA; Brigham ME; Schmitt CJ; Lorenz DL
    Environ Monit Assess; 2011 Apr; 175(1-4):175-91. PubMed ID: 20535551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Sport Fish Mercury Concentrations from Food Web Shifts Suggest Partial Decoupling from Atmospheric Deposition in Two Colorado Reservoirs.
    Wolff BA; Johnson BM; Lepak JM
    Arch Environ Contam Toxicol; 2017 Feb; 72(2):167-177. PubMed ID: 28064370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends.
    Braune BM; Outridge PM; Fisk AT; Muir DC; Helm PA; Hobbs K; Hoekstra PF; Kuzyk ZA; Kwan M; Letcher RJ; Lockhart WL; Norstrom RJ; Stern GA; Stirling I
    Sci Total Environ; 2005 Dec; 351-352():4-56. PubMed ID: 16109439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal trends in fish mercury concentrations in an Adirondack Lake managed with a continual predator removal program.
    Taylor MS; Driscoll CT; Lepak JM; Josephson DC; Jirka KJ; Kraft CE
    Ecotoxicology; 2020 Dec; 29(10):1762-1773. PubMed ID: 31925620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hg concentrations in fish from coastal waters of California and Western North America.
    Davis JA; Ross JRM; Bezalel S; Sim L; Bonnema A; Ichikawa G; Heim WA; Schiff K; Eagles-Smith CA; Ackerman JT
    Sci Total Environ; 2016 Oct; 568():1146-1156. PubMed ID: 27067833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury concentrations in fish and invertebrates of the Finger Lakes in central New York, USA.
    Razavi NR; Halfman JD; Cushman SF; Massey T; Beutner R; Foust J; Gilman B; Cleckner LB
    Ecotoxicology; 2020 Dec; 29(10):1673-1685. PubMed ID: 31820166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury temporal trends in top predator fish of the Laurentian Great Lakes.
    Zananski TJ; Holsen TM; Hopke PK; Crimmins BS
    Ecotoxicology; 2011 Oct; 20(7):1568-76. PubMed ID: 21792660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury in the fish of New York's Great Lakes: A quarter century of near stability.
    Richter W; Skinner LC
    Ecotoxicology; 2020 Dec; 29(10):1721-1738. PubMed ID: 31784923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada.
    Eagles-Smith CA; Ackerman JT; Willacker JJ; Tate MT; Lutz MA; Fleck JA; Stewart AR; Wiener JG; Evers DC; Lepak JM; Davis JA; Pritz CF
    Sci Total Environ; 2016 Oct; 568():1171-1184. PubMed ID: 27102274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial patterns and temporal trends in mercury concentrations in common loons (Gavia immer) from 1998 to 2016 in New York's Adirondack Park: has this top predator benefitted from mercury emission controls?
    Schoch N; Yang Y; Yanai RD; Buxton VL; Evers DC; Driscoll CT
    Ecotoxicology; 2020 Dec; 29(10):1774-1785. PubMed ID: 31691909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in mercury levels in Great Lakes fish between 1970s and 2007.
    Bhavsar SP; Gewurtz SB; McGoldrick DJ; Keir MJ; Backus SM
    Environ Sci Technol; 2010 May; 44(9):3273-9. PubMed ID: 20350001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective.
    Visha A; Gandhi N; Bhavsar SP; Arhonditsis GB
    Environ Pollut; 2018 Dec; 243(Pt A):777-789. PubMed ID: 30224205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-anthropocene mercury residues in North American freshwater fish.
    Hope BK; Louch J
    Integr Environ Assess Manag; 2014 Apr; 10(2):299-308. PubMed ID: 24458807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal PCB and mercury trends in Lake Erie fish communities: a dynamic linear modeling analysis.
    Sadraddini S; Ekram Azim M; Shimoda Y; Mahmood M; Bhavsar SP; Backus SM; Arhonditsis GB
    Ecotoxicol Environ Saf; 2011 Nov; 74(8):2203-14. PubMed ID: 21835464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns and trends of fish mercury in New York State.
    Millard G; Driscoll C; Montesdeoca M; Yang Y; Taylor M; Boucher S; Shaw A; Richter W; Paul E; Parker C; Yokota K
    Ecotoxicology; 2020 Dec; 29(10):1709-1720. PubMed ID: 31955284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury Temporal Trends in Top Predator Fish of the Laurentian Great Lakes from 2004 to 2015: Are Concentrations Still Decreasing?
    Zhou C; Cohen MD; Crimmins BA; Zhou H; Johnson TA; Hopke PK; Holsen TM
    Environ Sci Technol; 2017 Jul; 51(13):7386-7394. PubMed ID: 28578575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term trends of Hg uptake in resident fish from a polluted estuary.
    Jones HJ; Swadling KM; Tracey SR; Macleod CK
    Mar Pollut Bull; 2013 Aug; 73(1):263-72. PubMed ID: 23809330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.
    Eagles-Smith CA; Herring G; Johnson B; Graw R
    Environ Pollut; 2016 May; 212():279-289. PubMed ID: 26854697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.