BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31583573)

  • 1. Functional annotation of mulberry (Morus spp.) transcriptome, differential expression of genes related to growth and identification of putative genic SSRs, SNPs and InDels.
    Rukmangada MS; Sumathy R; Naik VG
    Mol Biol Rep; 2019 Dec; 46(6):6421-6434. PubMed ID: 31583573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomics and comprehensive marker resource development in mulberry.
    Saeed B; Baranwal VK; Khurana P
    BMC Genomics; 2016 Feb; 17():98. PubMed ID: 26846165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus).
    Cui K; Wang H; Liao S; Tang Q; Li L; Cui Y; He Y
    PLoS One; 2016; 11(6):e0157362. PubMed ID: 27304219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome analysis of mulberry (Morus L.) under drought stress using RNA-seq technology.
    Wang H; Tong W; Feng L; Jiao Q; Long L; Fang R; Zhao W
    Bioorg Khim; 2014; 40(4):458-67. PubMed ID: 25898756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major intrinsic proteins repertoire of Morus notabilis and their expression profiles in different species.
    Baranwal VK; Khurana P
    Plant Physiol Biochem; 2017 Feb; 111():304-317. PubMed ID: 27988481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don.
    Kumar S; Shah N; Garg V; Bhatia S
    Plant Cell Rep; 2014 Jun; 33(6):905-18. PubMed ID: 24482265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic Analysis Reveals Candidate Genes Responsive to
    Jiang H; Jin X; Shi X; Xue Y; Jiang J; Yuan C; Du Y; Liu X; Xie R; Liu X; Li L; Wei L; Zhang C; Tong L; Chai Y
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171780
    [No Abstract]   [Full Text] [Related]  

  • 8. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis, expression dynamics and varietal comparison of NAC gene family at various developmental stages in Morus notabilis.
    Baranwal VK; Khurana P
    Mol Genet Genomics; 2016 Jun; 291(3):1305-17. PubMed ID: 26942603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics.
    Duan X; Schmidt E; Li P; Lenox D; Liu L; Shu C; Zhang J; Liang C
    BMC Plant Biol; 2012 Jun; 12():94. PubMed ID: 22712730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and Verification of Photosynthesis and Chloroplast-Related Genes in Mulberry by Comparative RNA-Seq and Virus-Induced Gene Silencing.
    Li Y; Yu C; Mo R; Zhu Z; Dong Z; Hu X; Deng W; Zhuang C
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole genome re-sequencing and transcriptome reveal an alteration in hormone signal transduction in a more-branching mutant of apple.
    Ge H; Li G; Wan S; Zhao A; Huang Y; Ma R; Zhang R; Song Y; Sha G
    Gene; 2022 Apr; 818():146214. PubMed ID: 35066064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Immune-Related Genes and Development of SSR/SNP Markers from the Spleen Transcriptome of Schizothorax prenanti.
    Luo H; Xiao S; Ye H; Zhang Z; Lv C; Zheng S; Wang Z; Wang X
    PLoS One; 2016; 11(3):e0152572. PubMed ID: 27019203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome assembly for the tropical grass Panicum maximum Jacq.
    Toledo-Silva G; Cardoso-Silva CB; Jank L; Souza AP
    PLoS One; 2013; 8(7):e70781. PubMed ID: 23923022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers.
    Guo X; Li Y; Li C; Luo H; Wang L; Qian J; Luo X; Xiang L; Song J; Sun C; Xu H; Yao H; Chen S
    Gene; 2013 Sep; 527(1):131-8. PubMed ID: 23756193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo assembly, functional annotation, and marker development of Asian pear (Pyrus pyrifolia) fruit transcriptome through massively parallel sequencing.
    Li JF; Gao Z; Lou YS; Luo M; Song SR; Xu WP; Wang SP; Zhang CX
    Genet Mol Res; 2015 Dec; 14(4):18344-55. PubMed ID: 26782482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein) using transcriptome sequences.
    Wei DD; Chen EH; Ding TB; Chen SC; Dou W; Wang JJ
    PLoS One; 2013; 8(11):e80046. PubMed ID: 24244605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.).
    Mercati F; Riccardi P; Leebens-Mack J; Abenavoli MR; Falavigna A; Sunseri F
    Plant Sci; 2013 Apr; 203-204():115-23. PubMed ID: 23415335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptomic analysis and development of EST-SSRs for Sorbus pohuashanensis (Hance) Hedl.
    Liu C; Dou Y; Guan X; Fu Q; Zhang Z; Hu Z; Zheng J; Lu Y; Li W
    PLoS One; 2017; 12(6):e0179219. PubMed ID: 28614366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.