These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31583958)
1. TOR inhibition interrupts the metabolic homeostasis by shifting the carbon-nitrogen balance in Mubeen U; Giavalisco P; Caldana C Plant Signal Behav; 2019; 14(11):1670595. PubMed ID: 31583958 [TBL] [Abstract][Full Text] [Related]
2. Target of Rapamycin Inhibition in Mubeen U; Jüppner J; Alpers J; Hincha DK; Giavalisco P Plant Cell; 2018 Oct; 30(10):2240-2254. PubMed ID: 30228127 [TBL] [Abstract][Full Text] [Related]
3. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen starvation leads to TOR kinase-mediated downregulation of fatty acid synthesis in the algae Chlorella sorokiniana and Chlamydomonas reinhardtii. Vijayan J; Alvarez S; Naldrett MJ; Morse W; Maliva A; Wase N; Riekhof WR BMC Plant Biol; 2024 Aug; 24(1):753. PubMed ID: 39107711 [TBL] [Abstract][Full Text] [Related]
5. Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. Lee DY; Fiehn O J Microbiol Biotechnol; 2013; 23(7):923-31. PubMed ID: 23727803 [TBL] [Abstract][Full Text] [Related]
6. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123 [TBL] [Abstract][Full Text] [Related]
7. Photosynthetic assimilation of CO Mallén-Ponce MJ; Pérez-Pérez ME; Crespo JL Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996872 [TBL] [Abstract][Full Text] [Related]
8. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Lee DY; Park JJ; Barupal DK; Fiehn O Mol Cell Proteomics; 2012 Oct; 11(10):973-88. PubMed ID: 22787274 [TBL] [Abstract][Full Text] [Related]
9. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. Subramanian V; Dubini A; Astling DP; Laurens LM; Old WM; Grossman AR; Posewitz MC; Seibert M J Proteome Res; 2014 Dec; 13(12):5431-51. PubMed ID: 25333711 [TBL] [Abstract][Full Text] [Related]
10. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321 [TBL] [Abstract][Full Text] [Related]
11. TOR kinase activity in Chlamydomonas reinhardtii is modulated by cellular metabolic states. Upadhyaya S; Agrawal S; Gorakshakar A; Rao BJ FEBS Lett; 2020 Oct; 594(19):3122-3141. PubMed ID: 32677084 [TBL] [Abstract][Full Text] [Related]
12. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of TOR in Ford MM; Smythers AL; McConnell EW; Lowery SC; Kolling DRJ; Hicks LM Cells; 2019 Sep; 8(10):. PubMed ID: 31569396 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Díaz-Troya S; Pérez-Pérez ME; Pérez-Martín M; Moes S; Jeno P; Florencio FJ; Crespo JL Plant Physiol; 2011 Oct; 157(2):730-41. PubMed ID: 21825107 [TBL] [Abstract][Full Text] [Related]
15. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Batista AD; Rosa RM; Machado M; Magalhães AS; Shalaguti BA; Gomes PF; Covell L; Vaz MGMV; Araújo WL; Nunes-Nesi A Metabolomics; 2019 Feb; 15(3):31. PubMed ID: 30830512 [TBL] [Abstract][Full Text] [Related]
16. TOR Signaling and Nutrient Sensing. Dobrenel T; Caldana C; Hanson J; Robaglia C; Vincentz M; Veit B; Meyer C Annu Rev Plant Biol; 2016 Apr; 67():261-85. PubMed ID: 26905651 [TBL] [Abstract][Full Text] [Related]
17. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Fan J; Yan C; Andre C; Shanklin J; Schwender J; Xu C Plant Cell Physiol; 2012 Aug; 53(8):1380-90. PubMed ID: 22642988 [TBL] [Abstract][Full Text] [Related]
18. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
19. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Pérez-Pérez ME; Couso I; Crespo JL Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927 [TBL] [Abstract][Full Text] [Related]
20. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. Shinkawa H; Kajikawa M; Nomura Y; Ogura M; Sawaragi Y; Yamano T; Nakagami H; Sugiyama N; Ishihama Y; Kanesaki Y; Yoshikawa H; Fukuzawa H Plant Cell Physiol; 2019 Apr; 60(4):916-930. PubMed ID: 30668822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]