These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31583958)

  • 21. [Influence of methanol on the content of NAD(P)H, free amino acids and protein in the cells of Chlamydomonas reinhartdii].
    Stepanov SS; Zolotar'ova OK
    Ukr Biokhim Zh (1999); 2013; 85(4):82-9. PubMed ID: 24319976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Relationship of Triacylglycerol and Starch Accumulation to Carbon and Energy Flows during Nutrient Deprivation in Chlamydomonas reinhardtii.
    Juergens MT; Disbrow B; Shachar-Hill Y
    Plant Physiol; 2016 Aug; 171(4):2445-57. PubMed ID: 27325664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.
    Crespo JL; Díaz-Troya S; Florencio FJ
    Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production.
    Pancha I; Chokshi K; Tanaka K; Imamura S
    Plant Cell Physiol; 2020 Apr; 61(4):675-684. PubMed ID: 32105317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BiP links TOR signaling to ER stress in Chlamydomonas.
    Crespo JL
    Plant Signal Behav; 2012 Feb; 7(2):273-5. PubMed ID: 22353876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.
    Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC
    Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Urea as a source of nitrogen and carbon leads to increased photosynthesis rates in Chlamydomonas reinhardtii under mixotrophy.
    Rosa RM; Machado M; Vaz MGMV; Lopes-Santos R; Nascimento AGD; Araújo WL; Nunes-Nesi A
    J Biotechnol; 2023 Apr; 367():20-30. PubMed ID: 36966923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine.
    Hellio C; Veron B; Le Gal Y
    Plant Physiol Biochem; 2004 Mar; 42(3):257-64. PubMed ID: 15051050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis.
    Park JJ; Wang H; Gargouri M; Deshpande RR; Skepper JN; Holguin FO; Juergens MT; Shachar-Hill Y; Hicks LM; Gang DR
    Plant J; 2015 Feb; 81(4):611-24. PubMed ID: 25515814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.
    Wase N; Black PN; Stanley BA; DiRusso CC
    J Proteome Res; 2014 Mar; 13(3):1373-96. PubMed ID: 24528286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.
    Zhang Z; Zhu JY; Roh J; Marchive C; Kim SK; Meyer C; Sun Y; Wang W; Wang ZY
    Curr Biol; 2016 Jul; 26(14):1854-60. PubMed ID: 27345161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.
    Hung CH; Kanehara K; Nakamura Y
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1282-1293. PubMed ID: 27060488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role for glucose-6-phosphate dehydrogenase in short- and long-term regulation of photosynthetic and respiratory carbon and nitrogen metabolism in nitrogen-limited Chlamydomonas reinhardtii.
    Huppe HC; Turpin DH
    Biochem Soc Trans; 1996 Aug; 24(3):767-70. PubMed ID: 8878844
    [No Abstract]   [Full Text] [Related]  

  • 34. Nutritional influences on biomass behaviour and metabolic products by Chlamydomonas reinhardtii.
    de M Sousa L; de S Ferreira J; Cardoso VL; Batista FRX
    World J Microbiol Biotechnol; 2022 Apr; 38(6):96. PubMed ID: 35460020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.
    Davis MC; Fiehn O; Durnford DG
    Plant Cell Environ; 2013 Jul; 36(7):1391-405. PubMed ID: 23346954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii.
    Jüppner J; Mubeen U; Leisse A; Caldana C; Brust H; Steup M; Herrmann M; Steinhauser D; Giavalisco P
    Plant J; 2017 Oct; 92(2):331-343. PubMed ID: 28742931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate.
    Isanta-Navarro J; Peoples LM; Bras B; Church MJ; Elser JJ
    J Phycol; 2024 Apr; 60(2):418-431. PubMed ID: 38196398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas.
    Takeuchi T; Benning C
    Biotechnol Biofuels; 2019; 12():292. PubMed ID: 31890020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation.
    Longworth J; Noirel J; Pandhal J; Wright PC; Vaidyanathan S
    J Proteome Res; 2012 Dec; 11(12):5959-71. PubMed ID: 23113808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of TOR, Nitrogen Assimilation, and Amino Acid Biosynthesis: Lessons from Chlamydomonas.
    Mach J
    Plant Cell; 2018 Oct; 30(10):2231-2232. PubMed ID: 30327390
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.