These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31583958)
41. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR. Mallén-Ponce MJ; Pérez-Pérez ME; Crespo JL New Phytol; 2022 Nov; 236(4):1261-1266. PubMed ID: 36052700 [TBL] [Abstract][Full Text] [Related]
43. The Ancient Phosphatidylinositol 3-Kinase Signaling System Is a Master Regulator of Energy and Carbon Metabolism in Algae. Ramanan R; Tran QG; Cho DH; Jung JE; Kim BH; Shin SY; Choi SH; Liu KH; Kim DS; Lee SJ; Crespo JL; Lee HG; Oh HM; Kim HS Plant Physiol; 2018 Jul; 177(3):1050-1065. PubMed ID: 29769325 [TBL] [Abstract][Full Text] [Related]
44. Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii. Shene C; Asenjo JA; Chisti Y Plant J; 2018 Dec; 96(5):1076-1088. PubMed ID: 30168220 [TBL] [Abstract][Full Text] [Related]
45. Arginine is a component of the ammonium-CYG56 signalling cascade that represses genes of the nitrogen assimilation pathway in Chlamydomonas reinhardtii. González-Ballester D; Sanz-Luque E; Galván A; Fernández E; de Montaigu A PLoS One; 2018; 13(4):e0196167. PubMed ID: 29684072 [TBL] [Abstract][Full Text] [Related]
46. Predicting the physiological role of circadian metabolic regulation in the green alga Chlamydomonas reinhardtii. Schäuble S; Heiland I; Voytsekh O; Mittag M; Schuster S PLoS One; 2011; 6(8):e23026. PubMed ID: 21887226 [TBL] [Abstract][Full Text] [Related]
47. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plancke C; Vigeolas H; Höhner R; Roberty S; Emonds-Alt B; Larosa V; Willamme R; Duby F; Onga Dhali D; Thonart P; Hiligsmann S; Franck F; Eppe G; Cardol P; Hippler M; Remacle C Plant J; 2014 Feb; 77(3):404-17. PubMed ID: 24286363 [TBL] [Abstract][Full Text] [Related]
48. From Feasting to Fasting: The Arginine Pathway as a Metabolic Switch in Nitrogen-Deprived Monteiro LFR; Giraldi LA; Winck FV Cells; 2023 May; 12(10):. PubMed ID: 37408213 [TBL] [Abstract][Full Text] [Related]
49. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Roustan V; Weckwerth W Front Plant Sci; 2018; 9():1590. PubMed ID: 30546371 [TBL] [Abstract][Full Text] [Related]
50. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Teichert S; Wottawa M; Schönig B; Tudzynski B Eukaryot Cell; 2006 Oct; 5(10):1807-19. PubMed ID: 17031002 [TBL] [Abstract][Full Text] [Related]
51. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. James GO; Hocart CH; Hillier W; Chen H; Kordbacheh F; Price GD; Djordjevic MA Bioresour Technol; 2011 Feb; 102(3):3343-51. PubMed ID: 21146403 [TBL] [Abstract][Full Text] [Related]
52. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669 [TBL] [Abstract][Full Text] [Related]
53. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. Imam S; Schäuble S; Valenzuela J; López García de Lomana A; Carter W; Price ND; Baliga NS Plant J; 2015 Dec; 84(6):1239-56. PubMed ID: 26485611 [TBL] [Abstract][Full Text] [Related]
54. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Kuruvilla FG; Shamji AF; Schreiber SL Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207 [TBL] [Abstract][Full Text] [Related]
55. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. Boyle NR; Sengupta N; Morgan JA PLoS One; 2017; 12(5):e0177292. PubMed ID: 28542252 [TBL] [Abstract][Full Text] [Related]
56. [Study on the removal of nitrogen and phosphorus from wastewater by Chlamydomonas reinhardtii]. Deng X; Wei B; Hu ZL Huan Jing Ke Xue; 2010 Jun; 31(6):1489-93. PubMed ID: 20698261 [TBL] [Abstract][Full Text] [Related]
57. Nutrient scavenging and energy management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas. Saroussi S; Sanz-Luque E; Kim RG; Grossman AR Curr Opin Plant Biol; 2017 Oct; 39():114-122. PubMed ID: 28692856 [TBL] [Abstract][Full Text] [Related]
58. Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes. Mao L; Verwoerd WS J Biosci Bioeng; 2014 Nov; 118(5):565-74. PubMed ID: 24875305 [TBL] [Abstract][Full Text] [Related]
59. Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Liao XH; Majithia A; Huang X; Kimmel AR Amino Acids; 2008 Nov; 35(4):761-70. PubMed ID: 18651095 [TBL] [Abstract][Full Text] [Related]