These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31584057)

  • 1. Structural transition induced by compression and stretching of puckered arsenene nanotubes.
    Quijano-Briones JJ; Fernández-Escamilla HN; Guerrero-Sánchez J; Martínez-Guerra E; Takeuchi N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22467-22474. PubMed ID: 31584057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the electronic structure of single-walled GeS nanotubes.
    Yu D; Ku R; Hu Y; Wei Y; Zhu C; Liu Z; Zhang G; Li W; Yang J; Li X
    RSC Adv; 2022 Oct; 12(45):29291-29299. PubMed ID: 36320760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-Dependent Critical Temperature and Anomalous Optical Dispersion in Ferromagnetic CrI₃ Nanotubes.
    Moaied M; Hong J
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30691119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical fracture properties of puckered and buckled arsenenes by molecular dynamics simulations.
    Yang B; Li M; Wang J; Zhang J; Liao D; Yue Y
    Phys Chem Chem Phys; 2019 Jun; 21(23):12372-12379. PubMed ID: 31140515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphenylene Nanotubes.
    Koch AT; Khoshaman AH; Fan HD; Sawatzky GA; Nojeh A
    J Phys Chem Lett; 2015 Oct; 6(19):3982-7. PubMed ID: 26722903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the indirect-direct band gap transition in the MoS
    Wu HH; Meng Q; Huang H; Liu CT; Wang XL
    Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Evaluation of the Morphology of WS
    Piskunov S; Lisovski O; Zhukovskii YF; D'yachkov PN; Evarestov RA; Kenmoe S; Spohr E
    ACS Omega; 2019 Jan; 4(1):1434-1442. PubMed ID: 31459410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene.
    Galicia Hernandez JM; Fernandez-Escamilla HN; Guerrero Sanchez J; Takeuchi N
    Sci Rep; 2022 Dec; 12(1):20979. PubMed ID: 36470955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.
    Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A
    Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doping induced structural stability and electronic properties of GaN nanotubes.
    Srivastava A; Khan MI; Tyagi N; Swaroop Khare P
    ScientificWorldJournal; 2014; 2014():984591. PubMed ID: 24707225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Structures of AlGaN2 Nanotubes and AlN-GaN Nanotube Superlattice.
    Pan H; Feng YP; Lin J
    J Chem Theory Comput; 2008 May; 4(5):703-7. PubMed ID: 26621085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic and electronic properties of single-walled Mo
    Jalil A; Sun Z; Wang D; Wu X
    J Phys Condens Matter; 2018 Apr; 30(15):155305. PubMed ID: 29498354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic point defects in buckled and puckered arsenene: a first-principles study.
    Iordanidou K; Kioseoglou J; Afanas'ev VV; Stesmans A; Houssa M
    Phys Chem Chem Phys; 2017 Apr; 19(15):9862-9871. PubMed ID: 28352871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physisorption of trichloroethylene and tetrachloroethylene on novel zeta arsenene nanotubes - A first-principles study.
    Jyothi MS; Nagarajan V; Chandiramouli R
    J Mol Graph Model; 2022 Sep; 115():108233. PubMed ID: 35661590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing doping strategy in arsenene monolayer for spintronic and optoelectronic applications: a case study of germanium and nitrogen as dopants.
    Van On V; Ha CV; Anh DT; Guerrero-Sanchez J; Hoat DM
    J Phys Condens Matter; 2022 Jun; 34(35):. PubMed ID: 35724657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT study of structural, elastic, electronic and dielectric properties of blue phosphorus nanotubes.
    Hao J; Wang Z; Jin Q
    Sci Rep; 2019 Aug; 9(1):11264. PubMed ID: 31375733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional changes as a function of charge injection in single-walled carbon nanotubes.
    Sun G; Kürti J; Kertesz M; Baughman RH
    J Am Chem Soc; 2002 Dec; 124(50):15076-80. PubMed ID: 12475352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imogolite-like nanotubes: structure, stability, electronic and mechanical properties of the phosphorous and arsenic derivatives.
    Guimarães L; Pinto YN; Lourenço MP; Duarte HA
    Phys Chem Chem Phys; 2013 Mar; 15(12):4303-9. PubMed ID: 23407893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and optical properties of pristine and boron-nitrogen doped graphyne nanotubes.
    Bhattacharya B; Singh NB; Mondal R; Sarkar U
    Phys Chem Chem Phys; 2015 Jul; 17(29):19325-41. PubMed ID: 26138807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.